IP₃ Receptor Binds to and Sensitizes TRPV4 Channel to Osmotic Stimuli via a Calmodulin-binding Site *

Received for publication, September 10, 2008
Published, JBC Papers in Press, September 30, 2008, DOI 10.1074/jbc.C800184200
Anna García-Elias, Ivan M. Lorenzo, Rubén Vicente, and Miguel A. Valverde
From the Laboratory of Molecular Physiology and Channelopathies, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Edifici PRBB, C/ Dr. Aiguader 88, Barcelona 08003, Spain

Activation of the non-selective cation channel TRPV4 by mechanical and osmotic stimuli requires the involvement of phospholipase A₂ and the subsequent production of the arachidonic acid metabolites, epoxyeicosatrienoic acids (EET). Previous studies have shown that inositol trisphosphate (IP₃) sensitizes TRPV4 to mechanical, osmotic, and direct EET stimulation. We now search for the IP₃ receptor-binding site on TRPV4 and its relevance to IP₃-mediated sensitization. Three putative sites involved in protein-protein interactions were evaluated: a proline-rich domain (PRD), a calmodulin (CaM)-binding site, and the last four amino acids (DAPL) that show a PDZ-binding motif-like. TRPV4-ΔCaM (Δ812–831) channels preserved activation by hypotonicity, 4α-phorbol 12,13-didecanoate, and EET but lost their physical interaction with IP₃ receptor 3 and IP₃-mediated sensitization. Deletion of a PDZ-binding motif-like (TRPV4-ΔDAPL) did not affect channel activity or IP₃-mediated sensitization, whereas TRPV4-APRD-Δ132–144 resulted in loss of channel function despite correct trafficking. We conclude that IP₃-mediated sensitization requires IP₃ receptor binding to a TRPV4 C-terminal domain that overlaps with a previously described calmodulin-binding site.

The TRPV4² cation channel, a member of the TRP vanilloid subfamily, is expressed in a broad range of tissues where it participates in the generation of a Ca²⁺ signal and/or depolarization of the membrane potential (1). TRPV4 participation in osmo- and mechanotransduction (1, 2) contributes to important functions including cellular (3, 4) and systemic volume homeostasis (5, 6), arterial dilation (7, 8), nociception (9), epithelial hydroelectrolyte transport (10, 11), bladder voiding (12), and ciliary beat frequency regulation (13–15). TRPV4 also responds to temperature (16, 17), endogenous arachidonic acid (AA) metabolites (18), and phorbol esters including the inactive 4α-phorbol 12,13-didecanoate (4αPDD) (19, 20) and participates in receptor-operated Ca²⁺ entry (15), thus showing multiple modes of activation.

TRPV4 channel activity can be sensitized by co-application of different stimuli (9, 21, 22) or participation of different cell signaling pathways (14), suggesting the presence of different regulatory sites. In this sense, several proteins have been proposed to modulate TRPV4 subcellular localization and/or function: microtubule-associated protein 7 (23), calmodulin (CaM, (24)), with no lysine protein kinases (25), and PACSIN3 (26). We have also recently reported a close functional and physical interaction between the inositol trisphosphate receptor 3 (IP₃R3) and TRPV4 that sensitizes the latter to the mechano- and osmotransducing messenger 5'-6'-epoxyeicosatrienoic acid (EET) (14).

In this study, we reveal that IP₃-mediated sensitization of TRPV4 to EET requires IP₃R3 binding to TRPV4 and identify the IP₃R3-binding site in a C-terminal region of the TRPV4 that coincides with a previously described CaM-binding site (24). Besides, our study has provided further evidence of the importance of the TRPV4 N terminus in channel gating as deletion of a proline-rich domain prevents channel activation by different stimuli despite correct localization and oligomerization.

EXPERIMENTAL PROCEDURES

Generation of TRPV4 Mutants—TRPV4 mutations were generated by site-directed mutagenesis (QuickChange® II XL site-directed mutagenesis kit, Stratagene) deleting: 13 amino acids (positions 132–144) to generate the mutation lacking the N-terminal PRD domain (TRPV4-APRD); 20 amino acids (positions 812–831) for the mutation lacking the calmodulin-binding domain (TRPV4-ΔCaM); and the last 4 amino acids of the channel (positions 868–871) for the mutation lacking the C-terminal PDZ domain (TRPV4-ΔDAPL). All TRPV4 constructs were tagged with YFP (or cyan fluorescent protein) at the C terminus, and sequences were verified by PCR.

Cell Transfection—HEK293 and HeLa cells were transiently transfected with ExGen500 (Fermentas MBI) using 8 μg of polyethylenimine together with 3 μg of cDNA of the following plasmids: 1.5 μg of rat pcDNA3-IP₃R3 plasmid and 1.5 μg of human TRPV4-YFP plasmids, WT, or mutants. Cells were cultured from 24 to 48 h before use.

Confocal Imaging—HeLa cells transiently transfected with WT and TRPV4 mutants were fixed with 4% paraformaldehyde. The subcellular localization was analyzed under a ×63 1.32 oil Ph3 CS objective using an inverted Leica SP2 confocal microscope. Original images were not further processed except for adjustments of brightness, contrast, and color balance.

Co-immunoprecipitation Experiments—HEK293 cells were transiently transfected with IP₃R3 and TRPV4-YFP plasmids as described before. After 48 h, cells were lysed, total protein was...
recollected, and Western blot assays were carried out (using 100 μg) as described previously (14) to verify the presence of the proteins IP₃, R3 and TRPV4 channel. Direct and reverse co-immunoprecipitation experiments were done to evaluate the interaction between both proteins. For this, 6 μg of anti-GFP (direct immunoprecipitation) or anti-IP₃, R3 (reverse immunoprecipitation) were incubated for 1 h with 30 μL of G protein (protein G-Sepharose 4B Fast Flow, Sigma-Aldrich) at 4 °C. 1500 μg of total protein samples from transfected and non-transfected cells were incubated overnight at 4 °C, gently mixing, with the previous antibody-G protein complex. Immunocomplexes were washed four times in phosphate-buffered saline + 0.1% Nonidet P-40 solutions, and Western blot was performed. Primary antibodies used were anti-GFP (1:1000, mouse monoclonal antibody, Clontech Laboratories, Inc.) and anti-human TRPV4 (1:250, rabbit polyclonal antibody that recognizes the last 19 amino acids. Its specificity has been tested in both heterologous expression systems (27) and knock-out mouse models (12, 15)) for TRPV4-YFP and TRPV4 detection; and anti-IP₃, R3 (1:2000, rabbit antibody, BD Biosciences) for IP₃, R3 detection.

Calcium Imaging—Intracellular calcium was determined in transfected HeLa cells loaded with 4.5 μM fura-2-AM (Molecular Probes, Leiden, The Netherlands) as described previously (3, 27). Cytosolic Ca²⁺ levels are presented as the ratio of emitted fluorescence (510 nm) after excitation at 340 and 380 nm relative to the baseline. All experiments were registered at room temperature, and cells were bathed in an isotonic solution containing (in mM): 140 NaCl, 5 KCl, 1.2 CaCl₂, 0.5 MgCl₂, 5 glucose, and 10 HEPES (~305 mosmol/liter, pH 7.4).

Electrophysiological Recordings—Cationic currents were registered using the patch clamp technique in whole-cell configuration. Patch pipettes were filled with a solution containing (in mM): 20 cesium chloride, 100 cesium acetate, 1 MgCl₂, 0.1 EGTA, 10 HEPES, 4 Na₂ATP, and 0.1 NaGTP; 300 mosmol/liter, pH 7.2–7.3. Pipette solutions containing different concentrations of EET (BIOMOL) and IP₃ (Calbiochem) were also used and indicated in the corresponding figure (Fig. 4, B–F). Cells were bathed in a solution containing (in mM): 140 NaCl, 5 KCl, 1 MgCl₂, 10 HEPES, and 1 EGTA (~310 mosmol/liter, pH 7.3–7.4). HEK293 were clamped at 0 mV, and ramps from −140 mV to +140 mV (400 ms) were applied at a frequency of 0.2 Hz. Ramp data were acquired at 10 kHz and low pass-filtered at 1 kHz. All experiments were carried out at room temperature. Only those cells that presented YFP fluorescence were recorded.

Statistics—Data are expressed as means ± S.E. of n experiments. Analysis of variance or Student’s t test was performed with the Sigma Plot 8.02 (Systat Software, Inc.) and SPSS to determine statistical significance. Bonferroni’s test was used for post hoc comparison of means. p < 0.05 was considered significant.

RESULTS AND DISCUSSION

Localization of Wild Type and TRPV4 Mutants—We evaluated three putative IP₃, R-interacting sites in TRPV4 that may participate in IP₃-mediated sensitization of TRPV4 to mechanical and osmotic stimuli (Fig. 1A). An N-terminal proline-rich domain (PRD), unique to TRPV4 and not present in other TRPV proteins, has been implicated in the channel interaction with the regulatory proteins PACSINs (28). A shorter C terminus PRD has also been identified in other members of the TRP family (29) and appears to participate in protein-protein interactions including the Homer family proteins and IP₃, R, among others (30). TRPV4 also presents a CaM-binding site on its C terminus (24). CaM-binding sites have been recognized in different TRP channels as important regulatory domains, exerting both inhibitory and facilitatory effects on TRPs upon Ca²⁺-CaM binding (31). Besides, there is an overlap between the CaM- and IP₃, R-binding sites in many TRPs (31), leading to the proposal that IP₃, R binding to and displacing CaM from its binding site contributes to the activation of canonical TRP (TRPC) channels (32). CaM binding to ankyrin repeats of TRPV1 has also been identified (33, 34), but we do not know at present whether this N-terminal CaM-binding site is also present in TRPV4. Finally, we checked whether the final four amino acids of TRPV4 (DAPL) that present a PDZ-binding motif-like (35), may participate in the interaction with IP₃, R.

The subcellular distribution of wild type (TRPV4-WT, Fig. 1B) and TRPV4 mutants lacking the PRD (TRPV4-ΔPRD) (Fig. 1C), the CaM (TRPV4-ΔCaM) (Fig. 1D), or the final four amino acids (TRPV4-ΔDAPL) (Fig. 1E) was examined by confocal microscopy in transiently transfected HeLa cells. Both WT and deletion TRPV4 mutants localized to the plasma membrane.

Activation of WT and TRPV4 Mutants by Cell Swelling and 4αPDD—Intracellular [Ca²⁺] measurements using the fura-2 dye indicator showed a clear response to 30% hypotonic solutions in HeLa cells co-expressing TRPV4-WT, TRPV4-ΔCaM, or TRPV4-ΔDAPL constructs with IP₃, R3 (Fig. 2, A, C, and D). On restoration of the isotonic condition and recovering the basal [Ca²⁺] levels, cells also triggered a robust Ca²⁺ signal in response to 4αPDD (1 μM), a synthetic activator of TRPV4 (19), thereby confirming the channels functional expression. However, cells overexpressing TRPV4-ΔPRD did not respond to either 4αPDD (Fig. 2B) or hypo-
tonic solutions (Fig. 2B, inset) but showed a typical Ca\(^{2+}\) signal in response to the purinergic agonist ATP (100 μM).

Altogether, the results indicated that TRPV4-WT, TRPV4-ΔCaM, and TRPV4-ΔDAPL used in this study trafficked to the plasma membrane where they responded to typical TRPV4-activating stimuli. On the other hand, TRPV4-ΔPRD, despite its correct localization, did not elicit Ca\(^{2+}\) signals in response to hypotonicity or 4αPDD and, therefore, was of no use for the identification of the molecular mechanism underlying IP\(_3\)-mediated sensitization of TRPV4. Nevertheless, TRPV4-ΔPRD revealed an additional piece of evidence suggesting the relevance of the N terminus in TRPV4 gating. A previous report has already pointed to the PRD as a functionally important domain for TRPV4 channel gating. A previous report has already pointed to the PRD as a functionally important domain for TRPV4 channel gating.

Expression of the proteins of interest in the lysates later used for co-immunoprecipitation studies was probed by Western blotting with anti-GFP (to detect TRPV4) and anti-IP3R3 (Fig. 3A), whereas deletion of the last four amino acids (V4-ΔDAPL) did not affect IP\(_3\)R3 binding (Fig. 3D). These results were further confirmed by reversed co-immunoprecipitation (results not shown).

Deletion of the CaM-binding Site of TRPV4 Prevents IP\(_3\)R Binding and Sensitization to Hypotonic Stimulus—We have previously reported the modulatory effect of IP\(_3\),R on TRPV4 activation by mechanical and osmotic stimuli as well as the immunoprecipitation of TRPV4 and IP\(_3\)R3 (not IP\(_3\)R1) (14). We now address the identification of the IP\(_3\)-R-binding site on TRPV4 and its relevance for IP\(_3\)-mediated sensitization.

Expression of the proteins of interest in the lysates later used for co-immunoprecipitation studies was probed by Western blotting with anti-GFP (to detect TRPV4) and anti-IP\(_3\)R3 (Fig. 3A and B). Co-immunoprecipitation experiments found that deletion of the CaM-binding site (V4-ΔCaM) abolished IP\(_3\)-R3 binding (Fig. 3C), whereas deletion of the last four amino acids (V4-ΔDAPL) did not affect IP\(_3\)R3 binding (Fig. 3D). These results were further confirmed by reversed co-immunoprecipitation (results not shown).

The functional consequence of the loss of IP\(_3\)R3 binding to TRPV4-ΔCaM on IP\(_3\)-mediated sensitization was first evaluated with the intracellular [Ca\(^{2+}\)] indicator fura-2. As reported previously (14), concomitant activation of the phospholipase A\(_2\)-AA-EET and phospholipase C-IP\(_3\) pathways using hypotonic solutions and ATP, respectively, resulted in TRPV4 sensitization. Fig. 3E shows Ca\(^{2+}\) signals obtained in HeLa cells expressing TRPV4-WT and IP\(_3\)R3 challenged with a short exposure to 30% hypotonic solution and then exposed to hypotonic solution containing 1 μM ATP (a concentration that does not trigger Ca\(^{2+}\) response in HeLa cells (14)). The addition of extracellular ATP potentiated the hypotonicity-induced Ca\(^{2+}\) response. Mean increases in the Ca\(^{2+}\) signal are shown in Fig. 3E (bottom). Potentiation of the hypotonicity-induced Ca\(^{2+}\) signal by ATP was also observed in HEK293 cells previously reported the modulatory effect of IP3R on TRPV4 sensitivity. A previous report has already pointed to the PRD as a functionally important domain for TRPV4 channel gating.
Deletion of the CaM-binding Site of TRPV4 Prevents IP₃-mediated Sensitization to EET—EET metabolites of arachidonic acid are the final activators of TRPV4 in response to hypotonic shocks (14, 36). Accordingly, TRPV4-expressing cells respond to either external (18) or internal EET-containing solutions (14), an effect that can be potentiated by IP₃ (14). In our attempt to characterize the importance of the CaM-binding site in the modulation of TRPV4 activation by osmotic stimulus, we studied the impact of deleting the CaM-binding site on the IP₃-mediated potentiation of EET-induced TRPV4 currents.

Whole-cell TRPV4 currents of equal magnitude were recorded from TRPV4-WT- and TRPV4-ΔCaM-expressing HEK293 cells exposed to 1 μM 4αPDD (Fig. 4A). Similarly, maximal TRPV4 currents recorded in HEK293 cells dialyzed with pipette solutions containing 156 nM EET were undistinguishable between TRPV4-WT- and TRPV4-ΔCaM-expressing cells (Fig. 4B). Mean responses measured at +100 mV in TRPV4-WT- and TRPV4-ΔCaM-expressing HEK293 dialyzed with 156 nM EET were 94 ± 22 pA/pF (n = 4) and 79 ± 14 pA/pF (n = 7), respectively (p > 0.05). The electrophysiological data confirmed the observation carried out using intracellular Ca²⁺ indicators that TRPV4-ΔCaM are functional channels responding to typical TRPV4 stimuli.

We have previously reported that low concentrations of EET (1 nM) or 30 μM IP₃ (added to the intracellular pipette solutions) hardly activate TRPV4 currents. However, the presence of both 1 nM EET and 30 μM IP₃ triggered sizeable TRPV4 currents in both native and heterologously expressing cell systems (14), indicative of the IP₃-mediated sensitization of TRPV4 to the mechanos- and osmotransducing messenger EET. When 1 nM EET intracellular pipette solutions were tested on TRPV4-ΔCaM channels, no differences with TRPV4-WT channels were observed (26 ± 13 pA/pF (n = 5) and 27 ± 12 pA/pF (n = 9), respectively; measured at +100 mV; p > 0.05) (Fig. 4C). A significant difference in current magnitude was detected between the response of TRPV4-WT and TRPV4-ΔCaM channels to the combined presence of 1 nM EET and 30 μM IP₃ in the intracellular pipette solutions (Fig. 4D). Considering the reported positive feedback of Ca²⁺, via Ca²⁺-CaM binding to TRPV4 (24), a possible alternative explanation for the absence of IP₃-mediated sensitization in TRPV4-ΔCaM channels may be the lost Ca-CaM binding. Although we considered this an unlikely possibility, as whole-cell patch clamp experiments were carried out in the absence of Ca²⁺ and in the presence of EGTA (see also Ref. 14), this possibility was further ruled out using the CaM inhibitor W-7. The presence of the CaM inhibitor W-7 (30 μM) did not affect the IP₃-mediated sensitization of TRPV4-WT channels to 1 nM EET and 30 μM IP₃ (Fig. 4E). Mean responses measured at +100 mV in YFP-, TRPV4-WT-, and TRPV4-ΔCaM-expressing HEK293 dialyzed with 1 nM EET and 30 μM IP₃ are shown in Fig. 4F. Mean response of TRPV4-WT cells dialyzed with 1 nM EET, 30 μM IP₃, and 30 μM W-7 are also included.

Conclusion—Altogether, our results show that IP₃-mediated sensitization of TRPV4 is Ca-CaM independent, that TRPV4 channels lacking the CaM-binding site lose their interaction with IP₃R3, and consequently, they also lacked the IP₃-mediated sensitization to osmotic and direct EET stimulation. Our data with the TRPV4-ΔPRD also highlight the relevance of the proline-rich N-terminal region of TRPV4 in channel gating.

Acknowledgments—We acknowledge E. Vázquez and C. Plata for excellent technical support.

REFERENCES

ACCELERATED PUBLICATION: TRPV4 Channel Modulation by IP₃R
ACCELERATED PUBLICATION: TRPV4 Channel Modulation by IP$_3$R