Valproate (VPA) is a drug commonly used in neurology and psychiatry. Valproate-induced hyperammononemic encephalopathy (VHE) is an unusual, but serious, adverse effect of VPA treatment (1). VHE is a serious disease that can lead to death. It can, however, be reversed if a precocious diagnosis is made (2). It is therefore extremely important to recognize it and discontinue VPA treatment.

Predisposing causes

The main physiopathological mechanism that leads to VHE is an increased serum ammonia level. There are many causes of hyperammonemia such as urea cycle enzyme deficiency, Reye’s syndrome, several drugs (VPA, 5-Fluourouracil, and salicylates), and renal or hepatic failure (Table 1) (3).
Ornithine transcarbamylase (OTC) or ornithine carbamoyltransferase deficiency is the most commonly inherited cause of hyperammonemia. About 1 of 30,000 women in the United States is heterozygous for this urea cycle defect (4). OTC deficiency is an important risk factor for developing VHE in patients taking VPA. Therefore, recommendations for the screening of this and other urea cycle enzyme deficiencies include:

1. Those patients with a known family history of OTC deficiency.
2. Those patients who, after beginning treatment with VPA, develop unexplained episodes of confusion, especially in the setting of known stress factors (i.e., sepsis); aversion to protein (headache causing); and a family history of unexplained death in male children (especially males, because OTC is an X-linked disorder). Renal and liver functions, blood ammonia level, and excretion of urinary orotic acid should be screened. A provocative test such as allopurinol loading may also be carried out. This test consists of taking a single oral dose of allopurinol, which significantly increases the urinary excretion of orotic acid in OTC-deficient patients.

Therefore, in OTC deficiency we find high blood levels of ammonium, glutamine, and alanine, low blood levels of citrulline, and near-undetectable blood levels of arginine in combination with an increased excretion of urinary orotic acid (Fig. 1).

When hyperammonemia occurs in the neonatal period, some laboratory studies such as plasma and urinary amino acids, serum glucose, arterial blood gases, bicarbonate, lactate, citrulline, carnitine, urinary ketones, and urinary orotate can help make a specific diagnosis. Thus, organic acidemias should be suspected when hyperammonemia is associated with acidosis, ketosis, and low bicarbonate level. Some kinds of organic acidemias are also associated with hyperglycinemia and hypoglycemia. On the other hand, hyperammonemia, in addition to acidosis, ketosis, and increased lactate

Table 1 Hyperammonemia causes

<table>
<thead>
<tr>
<th>Enzyme defects in urea cycle</th>
<th>OTC deficiency</th>
<th>CPS-I deficiency</th>
<th>NAGS deficiency</th>
<th>AS deficiency</th>
<th>AL deficiency</th>
<th>Arginase deficiency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fatty acid oxidation defects</td>
<td>Acyl-CoA dehydrogenase deficiency</td>
<td>Systemic carnitine deficiency</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Congenital lactic acidosis</td>
<td>Pyruvate dehydrogenase deficiency</td>
<td>Pyruvate carboxylase deficiency</td>
<td>Mitochondrial diseases</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Organic acidemias</td>
<td>Isovaleric acidemia</td>
<td>Proionic acidemia</td>
<td>Methylmalonic acidemia</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Glutaric acidemia type II</td>
<td>Multiple carboxylase deficiency</td>
<td>Beta-ketothiolase deficiency</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dibasic amino acid transport defect</td>
<td>Lysinuric protein intolerance</td>
<td>Hyperammonemia-hyperornithinemia-homocitrullinuria</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Drugs</td>
<td>Valproate</td>
<td>5-Fluorouracil</td>
<td>Salicylates</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Liver diseases</td>
<td>Acute or chronic liver diseases</td>
<td>(cystic fibrosis, Wilson disease, biliary atresia, AAT deficiency...</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Renal diseases</td>
<td>Urinary tract infections with Proteus mirabilis, Staphylococcus or Corynebacterium</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 1. (a) EEG shows an irregular, continuous, severe and diffuse slowing with predominance of rhythmical theta and delta activity, which are diffuse signs of severe encephalopathy. (b) EEG made 9 days after VPA withdrawal and the first EEG shows an improvement with mild slowing and predominance of rhythmical theta activity, maximum at 8 Hz, which are diffuse signs of mild encephalopathy.

AAT, α-1-antitrypsin deficiency; AL, argininosuccinic acid lyase; AS, argininosuccinic synthetase; CPS-I, carbamoylphosphate synthetase-I; NAGS, N-acetylglutamate synthetase; OTC, ornithine transcarbamylase.
and citrulline, indicates pyruvate carboxylase deficiency. In contrast, urea cycle defects or transient hyperammonemia of the newborn causes hyperammonemia with respiratory alkalosis. In arginosuccinase acid synthetase deficiency plasma the citrulline level is very high (> 1000 \mu mol/l), whilst in arginosuccinase lyase deficiency the citrulline level is only mildly increased (100–300 \mu mol/l). Plasma citrulline levels are almost undetectable in carbamoylphosphate synthetase-I (CPS-I) and OTC deficiencies. In a similar way to OTC deficiency, N-acetylglutamate synthetase (NAGS) deficiency requires a liver biopsy for a definite diagnosis.

Clinical findings

Valproate-induced hyperammonemic encephalopathy is a serious disease that can lead to death. It can, however, be reversed if a precocious diagnosis is made (2) and VPA treatment is discontinued.

Valproate-induced hyperammonemic encephalopathy is clinically characterized by an acute or subacute decreasing level of consciousness that goes from drowsiness to lethargy and coma, ataxia, vomiting, and focal neurological deficit. Low-grade fever (5), amblyopia, and an increase in the frequency of seizures (6) can also be found. This finding can even lead to an increase in VPA dose before diagnosis, with the consequent worsening.

Laboratory findings

Laboratory tests usually show a normal liver function with hyperammonemia. A relationship between the daily doses of VPA and the appearance and severity of VHE has not been found (7). Therefore, there does not seem to be any relationship between the development of VHE and serum VPA levels. Blood VPA levels are within therapeutic ranges in most VHE cases (8). No correlation between clinical severity and higher blood ammonium levels when hyperammonemia is confirmed has been found (7). Other laboratory tests related to OTC deficiency have been described previously.

Electroencephalography (EEG)

An EEG study usually shows diffuse signs of severe encephalopathy. The main findings are irregular, continuous, severe, and diffuse slowing with a predominance of rhythmical theta and delta activity. Occasionally, triphasic waves can be found, with bursts of frontal intermittent rhythmic delta activity (Fig. 1A).

Valproate-induced hyperammonemic encephalopathy

Once VPA is discontinued, all these findings can be reversed, particularly if there is an early diagnosis. Progressive clinical improvement correlates with the normalization of EEG and serum ammonium levels (Fig. 1B).

Magnetic resonance imaging (MRI)

A previous study showed bilateral T2-hyperintense lesions in MRI located in the cerebellar white matter and globus pallidus. Proton MR spectroscopy (MRS) showed a severe depletion of myo-inositol and choline with glutamine excess, and a moderate decrease of N-acetyl aspartate (9, 10).

Pathologic findings

Most of the information about pathologic anatomy changes in VHE has been collected from the extensive number of articles published by Sobaniec-Lotowska (11–13). These are studies concerning cerebellar and temporal lobe ultrastructure changes in rats in VPA encephalopathy induced by chronic administration of VPA (9 and 12 months), and after its withdrawal for 1 and 3 months. In these studies, damage to astrocytes of the hippocampal gyre cortex and neocortex of the temporal lobe, mainly in the pyramidal layer, has been observed. The observed ultrastructural changes are cell swelling, decrease in the number of gliofilaments, and empty cytoplasmic vacuoles. Damage to Purkinje cells has been shown, mainly in mitochondria, but also in Golgi complex, granular and smooth endoplasmic reticulum, leading to the inhibition of oxidative phosphorylation, abnormal protein synthesis, and cell death. Most of these abnormalities tend to disappear 3 months after VPA withdrawal. However, damage to the synaptic junctions in the cerebellar cortex, mainly in the molecular layer, did not appear to be repaired 3 months after VPA withdrawal, and the abnormalities observed may suggest damage caused by ischemia because of changes in microcirculation (11–13).

Etiopathogenesis and therapeutic possibilities

The pathogenesis of VHE is not completely understood. Hyperammonemia has been postulated as the main cause of encephalopathy, although a high blood ammonium level has not been observed in all cases of VHE. Treatment with VPA can lead to hyperammonemia because of several mechanisms, the hepatic and renal effect of VPA and their metabolites being very important. On the one hand, increased uptake of glutamine,
and the release of ammonium in the kidneys, favor hyperammonemia through stimulation of kidney glutaminase in the renal cortex, and this seems to be produced by a VPA metabolite, sodium 2-propyl-4-pentenoate (4-en-VPA). Nevertheless, it appears that this mechanism is responsible for less than 25% of the increase in blood ammonium levels (14).

On the other hand, a VPA metabolite (propionate) is remarkable for producing a decrease of hepatic N-acetylglutamate (NAG) levels. This leads to the inhibition of hepatic mitochondrial CPS-I, the enzyme that begins the urea cycle (a chemical reaction set whose aim is to produce urea by removing two ammonium ions in each cycle) (8, 15, 16) (Fig. 2). Another VPA metabolite, 4-en-VPA, causes a decrease in the availability of acetyl-coenzymeA (acetyl-CoA) due to the formation of valproyl-CoA and its metabolites. Acetyl-CoA, together with glutamate, is needed to produce NAG. As a result, this leads to a decrease in hepatic NAG which causes an increase in blood ammonium levels as explained previously (8, 14, 15, 17, 18).

Thus, urea cycle enzyme deficiencies, such as OTC deficiency and carnitine deficiency (congenital or acquired, e.g., from hepatic failure, strict vegetarian diet), concomitant to the treatment with VPA, favor hyperammonemia and the development of VHE. OTC deficiency is an X-linked disorder and is the most commonly inherited cause of hyperammonemia (4, 19–21). OTC is one of the urea cycle enzymes. It catalyzes the reaction of carbamoylphosphate and ornithine to produce citrulline. As a result, in OTC deficiency there is an accumulation of carbamoylphosphate in the mitochondrion that leaks out of the cytoplasm to the pyrimidine synthesis pathway which increases urinary orotic acid excretion (19) (Fig. 2). Therefore, patients with VHE should be screened for OTC deficiency. This occurs mainly in women with VHE, because most men with OTC deficiency die in the neonatal period. Heterozygote females, however, may be either asymptomatic or have an aversion to protein until the development of VHE. Screening should be made for urinary orotic acid level (which would be increased, and it would also

Figure 2. Urea cycle and Krebs cycle. AL, argininosuccinic acid lyase; AS, argininosuccinic acid synthetase; AST, aspartate amino transferase; CA, carbonic anhydrase; CPS-I, carbamoylphosphate synthetase-I; GDH, glutamate dehydrogenase; GS, glutaminase; MDH, malate dehydrogenase; NAGS, N-acetylglutamate synthetase; OTC, ornithine transcarbamylase.
Valproate-induced hyperammonemic encephalopathy

ammonemia, because of the inhibition of the cerebral glutamine synthetase. This enzyme catalyzes the reaction that produces glutamine from the two compounds, ammonium and glutamate (Fig. 2). This glutamate is taken up by astrocytes as a protective effect against excitotoxicity (23, 33). It has also been demonstrated that phenytoin, phenobarbital, and carbamazepine lead to an increase in 4-en-VPA which produces a decrease in acetyl-CoA availability, and this causes a decrease in NAG. As a consequence, an increase in serum ammonium levels is produced, which explains the effect of polytherapy in the development of VHE (28). On the other hand, topiramate is also an inhibitor of carbonic anhydrase, which leads to hyperammonemia because it restricts the way of urea cycle. This synergic effect of VPA and topiramate could explain the relationship in VHE patients that have been taking a concomitant treatment with topiramate (6, 34). Furthermore, it has been suggested that high serum ammonium levels and low carnitine levels are more pronounced in those patients with polytherapy (VPA, phenytoin, and phenobarbital) than in those with monotherapy with VPA (35). VHE has also been related to a concomitant treatment with VPA and pivmecillinam, also known to decrease serum carnitine concentration (36).

Other drugs, such as salicylate, favor hyperammonemia by facilitating the development of VHE (this fact could explain a possible physiopathological relationship with Reye’s syndrome in children) (17, 37). This increase in serum ammonium levels has not been observed with other non-steroidal anti-inflammatory drugs, such as ibuprofen and naproxen. And even paracetamol appears to diminish the blood ammonium level (37).

The excessive inhibition of GABA due to the use of several drugs at the same time, which act over the GABA receptor, could lead to clinical encephalopathy (6, 34). Furthermore, ammonium seems to have an amplifying effect, direct and indirect, over the GABAergic neurotransmission, and is probably related to its serum level, producing either depression of the central nervous system or a neuroexcitatory effect with seizures (38).

The increase in seizure frequency in VHE could be explained by the toxicity that high ammonium levels have on astrocytes, leading to an inhibition of glutamate uptake by the cell, and the consequent neuronal damage and cerebral swelling. Ammonium is conjugated in the brain with α-ketoglutarate (and this reaction is catalyzed by glutamate dehydrogenase enzyme) to form glutamate (Fig. 1). Extracellular glutamate accumulation could produce damage by excitotoxicity with the
consequent increase in frequency of seizures (6, 7). On the other hand, glutamate production through the excess of ammonium could lead to depletion of \(\alpha\)-ketoglutarate in the brain which produces a block in Krebs cycle. Therefore, the absence of oxidative phosphorylation and Krebs cycle activity could lead to irreparable cell damage and neuronal death (33).

The mechanism through which hyperammonemia leads to encephalopathy could be explained by the mechanism explained previously and, also by the increase in serum glutamine levels (due to the excess of ammonium that would conjugate with glutamate to form glutamine). This, together with the inhibition of glutamine release from astrocytes that are exposed to ammonium, leads to an increased glutamine level in the astrocyte. These raised glutamine levels increase intracellular osmolality, with the consequent entry of water into the astrocytes, which then swell. This impedes the energetic metabolism of the astrocyte, leading to cerebral edema and a higher intracranial pressure (7). Osmotic factors are, therefore, very important in hyperammonemia and, even if glutamine acts as an increased organic osmolyte, *myo*-inositol acts as a compensatory decreased organic osmolyte in hyperammonemic states (39). This is in agreement with the severe depletion of *myo*-inositol shown in proton MRS in a VHE patient (9, 10).

In agreement with this, Takahashi et al. managed to prevent cerebral edema in hyperammonemic rats through the irreversible inhibition of the enzyme glutamine synthetase using the stereoisomer \(L\)-methionine S-sulfoximine (MSO). This prevents the increase in glutamine in the astrocyte and its osmotic effect (40, 41). It has been suggested, therefore, that the group of hyperammonemic rats which were treated with MSO had a higher plasma ammonium level, and also a lower glutamine level, in the brain than those untreated, with the consequent decrease in cerebral water percentage. All these findings would suggest that the accumulation of glutamine in the astrocyte is necessary for cerebral swelling, and that hyperammonemia on its own is not enough to develop VHE (39). In hyperammonemic states the cerebral glutamine level, normally 5 mmol/kg of brain, increases to 18 mmol/kg. An increase in extracellular potassium activity in the brain in hyperammonemic states – an effect that has also been attenuated by MSO – has been suggested. However, the probable adverse effect of MSO in reducing the seizure threshold which has been postulated in several studies in rats (although with the highest MSO dose range) and, also, clinical psychomotor agitation and hallucinations which occurred in a study with terminal cancer patients, have obstructed the chance of using MSO as a VHE treatment. The MSO dose and the type of stereoisomer used has not been described in these studies (39).

Conclusion

The development of progressive confusional states, sometimes severe, and sometimes coexisting with the increase in frequency of seizures after the onset of VPA treatment (and also after the onset of any other treatment with topiramate, phenobarbital, or pivmecillinam in a patient in concomitant treatment with VPA) obliges us to rule out VHE. In these patients, EEG is characterized by a severe encephalopathy that tends to normalize after VPA withdrawal. Therefore, when a VHE diagnosis is suspected the serum ammonium level and, if possible, the blood glutamate level should be observed. Moreover, urea cycle enzyme deficiencies, mainly OTC deficiency through blood ornithine level and urinary orotic acid level, a metabolic pathway involved in VHE physiopathology (4, 42), should be screened.

References

Valproate-induced hyperammonemic encephalopathy

