Epigenomic profiling of myelofibrosis reveals widespread DNA methylation changes in enhancer elements and ZFP36L1 as a potential tumor suppressor gene epigenetically regulated

by Nicolás Martínez-Calle, Marien Pascual, Raquel Ordoñez, Edurne San José-Enériz, Marta Kulis, Estíbaliz Miranda, Elisabeth Guruceaga, Víctor Segura, María José Larráyoz, Beatriz Bellosillo, María José Calasanz, Carles Besses, José Rifón, José I. Martín-Subero, Xabier Agirre, and Felipe Prosper

Haematologica 2019 [Epub ahead of print]

Citation: Nicolás Martínez-Calle, Marien Pascual, Raquel Ordoñez, Edurne San José-Enériz, Marta Kulis, Estíbaliz Miranda, Elisabeth Guruceaga, Víctor Segura, María José Larráyoz, Beatriz Bellosillo, María José Calasanz, Carles Besses, José Rifón, José I. Martín-Subero, Xabier Agirre, and Felipe Prosper. Epigenomic profiling of myelofibrosis reveals widespread DNA methylation changes in enhancer elements and ZFP36L1 as a potential tumor suppressor gene epigenetically regulated. Haematologica. 2019; 104:xxx
doi:10.3324/haematol.2018.204917

Publisher’s Disclaimer. E-publishing ahead of print is increasingly important for the rapid dissemination of science. Haematologica is, therefore, E-publishing PDF files of an early version of manuscripts that have completed a regular peer review and have been accepted for publication. E-publishing of this PDF file has been approved by the authors. After having E-published Ahead of Print, manuscripts will then undergo technical and English editing, typesetting, proof correction and be presented for the authors’ final approval; the final version of the manuscript will then appear in print on a regular issue of the journal. All legal disclaimers that apply to the journal also pertain to this production process.
Epigenomic profiling of myelofibrosis reveals widespread DNA methylation changes in enhancer elements and ZFP36L1 as a potential tumor suppressor gene epigenetically regulated

Nicolás Martínez-Calle1,2#, Marien Pascual1,2#, Raquel Ordoñez1,2#, Edurne San José-Enériz1,2, Marta Kulíš3, Estíbaliz Miranda1,2, Elisabeth Guruceaga4, Víctor Segura4, María José Larráyoz5, Beatriz Bellosillo6, María José Calasanz2,5, Carles Bessè7, José Rifón2,8, José I. Martín-Subero2,9,10, Xabier Agirre1,2*, Felipe Prosper1,2,8*.

1Área de Hemato-Oncología, Centro de Investigación Médica Aplicada, IDISNA, Universidad de Navarra, Avenida Pío XII-55, Pamplona, Spain.
2Centro de Investigación Biomédica en Red de Cáncer (CIBERONC).
3Fundació Clínic per a la Recerca Biomèdica, Barcelona, Spain
4Unidad de Bioinformática, Centro de Investigación Médica Aplicada, Universidad de Navarra, Avenida Pío XII-55, Pamplona, Spain.
5CIMA Lab Diagnostics, Universidad de Navarra, Pamplona, Spain.
6Departamento de Patología, Hospital del Mar, Barcelona, Spain.
7Departmento de Hematología, Hospital del Mar, Barcelona, Spain.
8Departamento de Hematología, Clínica Universidad de Navarra, Universidad de Navarra, Avenida Pío XII-36, Pamplona, Spain.
9Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.
10Departament de Fonaments Clínics, Facultat de Medicina, Universitat de Barcelona, Barcelona, Spain.

These authors share first authorship
* These authors share senior authorship

Running head
ZFP36L1 enhancer DNA methylation in MF.
KEY POINTS:

- Epigenetic profiling of myelofibrosis patients reveals that aberrant DNA methylation is enriched in enhancer regions, outside traditional CpG islands.

- ZFP36LI is inactivated through DNA methylation of its enhancer region and represents a potential novel tumour suppressor, with a potential role in myelofibrosis.

Correspondence and requests for materials should be addressed to:
X.A. (xaguirre@unav.es) or to F.P (fproser@unav.es).
ABSTRACT

In this study we have interrogated the DNA methylome of myelofibrosis patients using high-density DNA methylation arrays. We detected 35,215 differentially methylated CpGs corresponding to 10,253 genes between myelofibrosis patients and healthy controls. These changes were present both in primary and secondary myelofibrosis, which showed no differences between them. Remarkably, the majorities of differentially methylated CpGs were located outside gene promoter regions and showed a significant association with enhancer regions. This enhancer aberrant hypermethylation showed a negative correlation with the expression of 27 genes in the myelofibrosis cohort. Of these, we focused on ZFP36L1 gene and validated its decreased expression and enhancer DNA hypermethylation in an independent cohort of patients and myeloid cell-lines. In vitro reporter assay and 5’ azacitidine treatment confirmed the functional relevance of the enhancer hypermethylation of ZFP36L1. Furthermore, in vitro rescue of ZFP36L1 expression had an impact in cell proliferation and induced apoptosis in SET-2 cell line indicating a possible role of ZFP36L1 as a tumor suppressor gene in myelofibrosis. We describe the DNA methylation profile of myelofibrosis, identifying extensive changes in enhancer elements and revealing ZFP36L1 as a novel candidate tumor suppressor gene.
INTRODUCTION

Philadelphia chromosome-negative myeloproliferative neoplasms (MPN), namely polycythemia vera (PV), essential thrombocythemia (ET) and primary myelofibrosis (MF) are characterized by a clonal transformation of hematopoietic progenitors leading to expansion of fully differentiated myeloid cells\(^1\). Primary MF carries the worst prognosis of all MPN, harboring progressive marrow fibrosis, extramedullary hematopoiesis, mild to severe splenomegaly and increased risk of leukemic transformation\(^2\). Secondary MF can also arise from PV and ET (post-PV or post-ET MF hereafter) by mechanisms that are still poorly understood and are clinically and morphologically indistinguishable from primary MF\(^3\).

MF has been intensively studied from the genetic perspective\(^4,5\), in fact, the modified WHO diagnostic criteria for MPN requires the demonstration of a genetic marker of clonal hematopoiesis (\(JAK2\)V617F, CALR or MPL mutations)\(^6\). The frequency of mutations on relevant epigenetic genes (i.e. \(DNMT3A\), \(EZH2\) and \(ASXL1\)), suggest that MF might have an epigenetic component that to our knowledge, remains poorly characterized\(^5\). Actually, epigenetic changes such as DNA methylation have been scarcely addressed in MF\(^7\) partly due to the limited changes in promoter DNA methylation compared to other hematological malignancies, as previously published by our group\(^8\). DNA methylation of CpG islands (mostly on putative promoter regions) has been traditionally studied in both normal and neoplastic hematopoiesis\(^9,10\). However, high throughput platforms offer a wider coverage of the genome, allowing a better understanding of DNA methylation dynamics in regions distant from CpG islands\(^11\). In this regard, enhancer regions have been characterized as potentially relevant sites of DNA methylation outside CpG islands\(^12-14\). ChIP-seq studies have permitted the reliable mapping of genome-wide active enhancer regions based on histone modifications (i.e. H3K4me1 and H3K27Ac)\(^15,16\), allowing the identification of enhancers playing a role in the dynamic transcriptional regulation during hematopoiesis\(^17\).

The present work describes a comprehensive genome-wide analysis of DNA methylation
in MF patients, which has been coupled with gene expression analysis and information of functional chromatin states and compared with healthy donor samples16. Focusing on potential epigenetic alterations in enhancer regions, we identified \textit{ZFP36L1} as potential tumor suppressor gene with relevance for the pathogenesis of MF.
METHODS

Patient samples and clinical data
MF patient samples (n=39) were composed of either bone marrow (BM), granulocytes or total peripheral blood (PB) cells. Among the MF cohort there were primary MF (n=22), MF post-ET (n=7) or MF post-PV (n=10). PB cells from healthy donors (n=6) were used as control samples in this study. All patients were diagnosed using the 2008 version of the World Health Organization (WHO) classification system of hematological malignancies18. Data for *JAK2V617F* mutation was retrospectively available for all patients, no data for CALR and MPL mutations was available. Patient’s data are accessible from the Gene Expression Omnibus (GSE118241).

Samples and patient data were provided by the Biobank of the University of Navarra and were processed following standard operating procedures approved by the local Ethics & Scientific Committee. All patients consented prior to sample extraction and for the use of stored material for research purposes.

DNA Methylation profiling
DNA methylation was assessed with Human-Methylation 450K Bead-Chip kit (Illumina, Inc., San Diego, CA, USA) and the data was analyzed by Bioconductor open source software. The analytical pipeline implemented several filters to exclude technical and biological biases and taking into account the performance characteristics of Infinium I and Infinium II assays19. Differentially Methylated CpGs (DMC) were defined as previously described13,19. Details on the experimental procedures, annotation of CpG sites, detection of differentially methylated regions, and Gene Ontology analysis20 are described in the online Supplementary Methods.

Identification of candidate genes targeted by aberrant DNA methylation in enhancers
Data of gene expression profiling from primary MF and healthy PB samples was obtained from the publicly available GEO accession bank number GSE2604921. Data was further processed using R and the open source Limma package22. Further details are described in online Supplementary Methods.
Luciferase reporter assays
The CpG-free vector (pCPG-L), gently provided by Dr. Michael Rehli23, was used to clone the \textit{ZFP36L1} enhancer region. Luciferase experiments were performed in triplicates and the details are described in the online Supplementary Methods. Primer sequences are available in Supplementary Table 1.

\textit{ZFP36L1} binding motif search
To further validate the potential relevance of \textit{ZFP36L1} gene in MF, DREME motif-discovery algorithm24 was used to assess enrichment of genes with the \textit{ZFP36L1} consensus binding sequence among those genes differentially expressed in MF (FDR ≤ 0.05).

Overexpression of \textit{ZFP36L1}
A vector containing \textit{ZFP36L1} open reading frame was kindly provided by Dr. Murphy and sub-cloned into a PL-SIN-GK vector25. Further details are described in the online Supplementary Methods.

Statistical Analysis
For parametric group comparisons one-way ANOVA with Dunnet correction was used, whereas for non-parametric group comparisons Kruskall-Wallis test with Dunn correction was employed. Paired data was analyzed with Friedman non-parametric test with Dunn correction for multiple comparisons, for the data with single measurements. Two-way ANOVA with Tukey correction was used for data with multiple paired measurements. All tests were performed using Prism 7TM software (GraphPad, La Jolla, USA).

Details of other experimental procedures are given in the Online Supplementary Methods.
RESULTS AND DISCUSSION

MF is characterized by a specific DNA methylation pattern enriched in enhancer regions

In order to provide an exhaustive analysis of the DNA methylation profile in patients with MF, we analyzed the DNA methylome of patients with primary MF, secondary MF (including MF post-ET/post-PV) and healthy donors as controls, using the Human-Methylation 450K array. The first result worth highlighting is the epigenetic similarity, between primary and post-ET/post-PV myelofibrosis. Interestingly, with a FDR < 0.05, no differentially methylated CpGs (DMCs) between primary and secondary MF were found. Furthermore, we did not identify any CpG differentially methylated between post-ET and post-PV MF. However, both unsupervised principal component analysis (PCA) (Figure 1A) and hierarchical clustering study (Supplementary Figure 1A) using all CpGs analyzed confirmed an explicit segregation and a clear epigenetic difference between MF patient samples and healthy controls. These results allowed us hereafter to consider MF samples as a single sample cohort. Primary and secondary MFs are known to have very similar biological features, presenting symptoms and clinical course and in fact, both entities are treated indistinctively according to most published guidelines \(^{26}\). Nevertheless, some recent evidence from large retrospective trials has suggested that traditional prognostic factors may not be applicable to secondary MF as post-ET MF seems to have longer survival as compared to post-PV and primary MF \(^{3,26-28}\). Our current results are consistent with the similarities in the biological and clinical characteristics of primary and secondary MF, who are also remarkably homogenous in terms of their epigenetic profile, supporting a common biological origin \(^{29}\).

Next, we sought to interrogate changes in DNA methylation between MF samples (considering primary and post-ET/PV MF as a single entity) and healthy controls. In this supervised analysis, we detected 35,215 DMCs (FDR ≤ 0.05) corresponding to 10,253 coding genes. Among all of these DMCs, 65.3% were hypomethylated (corresponding to 22,998 CpGs) and the remaining 34.7% were hypermethylated (a total of 12,217 CpGs), suggesting that loss of DNA methylation is the predominant alteration in this disease. Global DNA hypomethylation has also been a common finding in other hematological
malignancies such as chronic lymphocytic leukemia, multiple myeloma or acute myeloid leukemia13,30,31.

Changes in DNA methylation levels are known to cooperate with the deposition of chromatin marks, particularly H3K4 methylation, to render the enhancers/promoters accessible/inaccessible for the transcription machinery32-34. Hence, the changes in DNA methylation observed in MF are very likely to impact the transcriptional profile of MF and potentially contribute to the malignant phenotype. In this context, differences in the DNA methylome between the novel MF subtypes defined by the new 2016 WHO classification (prefibrotic and over MF) remains to be characterized. This aspect exceeded the possibilities of our cohort, but warrants further investigation.

Even though previous studies have already interrogated the DNA methylation landscape of MF35, their findings are limited to small numbers of epigenetic abnormalities mainly focused on the study of promoter regions. Our genome-wide approach of DNA methylation analysis using the 450k array allowed us to interrogate regulatory regions outside traditional promoters and obtain a deeper insight into the aberrant DNA methylome of MF. Therefore, in order to characterize the functionality of the detected DMCs, we performed a series of analyses. First, we analyzed their genomic location and identified that both hyper and hypomethylated CpGs were underrepresented in classical CGIs and significantly enriched outside CGIs (Figure 1B). This is an interesting finding, because traditionally, neoplasms acquire hypomethylation outside CGIs and hypermethylation in CGIs13,31, and suggests that patterns of methylation gain in MF might differ to other neoplasms. To shed light into the specific function of the DMCs, chromatin state categorization of each CpG was done adapting a publicly available annotation of ChIP-seq data from CD34+ hematopoietic progenitor cells, in which four distinct states were defined: promoter (with H3K4me3), active enhancer (with H3K4me1 and H3K27ac), transcribed regions (showing H3K36me3) and heterochromatin (including H3K9me3 and H3K27me3)16. Both hyper and hypomethylated CpGs showed a significant enrichment in enhancer regions, together with a striking underrepresentation in promoter regions (Figure 1B). Unsupervised clustering of DMCs located exclusively
in enhancer regions (Supplementary table 2) displayed a clear segregation of the majority of MF patients from healthy controls (Figure 1C) identifying 4182 hyper and 10935 hypomethylated. This result reveals that patients with MF show an intrinsic aberrant pattern of DNA methylation preferentially located in enhancer regions of the genome.

To functionally characterize this aberrant DNA methylation of enhancer regions in MF, GO-PANTHER enrichment analysis was performed separately in differentially methylated genes. GO terms with an adjusted FDR < 0.05 were selected, showing in the case of hypermethylated enhancers interesting cellular processes such as cellular defense response or induction of apoptosis (Figure 1D). Enhancer DNA methylation changes have been described to play a more prominent role in transcriptional regulation than promoter DNA methylation, governing processes such as hematopoietic differentiation and neoplastic transformation through the regulation of key transcription factors and genes12,13,31,34,36. These evidence translated into the context of MPN, might support the implication of aberrant enhancer DNA methylation in the abnormal pattern of differentiation leading to MF.

DNA methylation of enhancer regions is associated with gene expression profile in MF

Next, DNA methylation levels of enhancer regions were associated with the expression of host and adjacent coding genes using publicly available gene expression data of an independent cohort of MF patients and healthy donors (GSE26049)21. Fold increase in gene expression values were grouped according to the hypermethylated ($\Delta\beta > 0.4$) or hypomethylated ($\Delta\beta < -0.4$) enhancer status in MF versus controls. This analysis showed that enhancer DNA hypermethylation was associated with decreased gene expression of host/adjacent coding genes. In contrast, hypomethylated enhancer regions were not related to increased gene expression (Figure 2A). These data suggest that aberrant DNA hypermethylation may be functionally more relevant than hypomethylation in MF. Enhancer hypermethylation has been reported in neutrophils12, B-cells37, AML cells30 and myeloma13 adding evidence to dynamic enhancer DNA hypermethylation as a relevant
regulatory mechanism of gene expression both in normal and neoplastic hematopoietic cells.

Next, we designed a more stringent approach to identify the set of genes underlying the most significant and substantial changes in enhancer DNA methylation (FDR < 0.01, Δβ > 0.4), coupled with downregulation of their expression (LogFC < 0) (Figure 2B). After identifying a number of potential candidates (27 genes), we focused on ZFP36L1, which codes for a RNA-binding protein that mediates the decay of unstable mRNAs with AU rich elements in the 3’ untranslated region (3’UTR)\(^{38,39}\). ZFP36L1 has been previously implicated in normal hematopoiesis\(^{40}\) and specifically associated with erythroid and myeloid differentiation\(^{41}\), suggesting a possible role of this gene in MF onset and progression. Moreover, ZFP36L1 is also known to mediate mRNA decay of relevant genes for cell proliferation, survival and differentiation such as CDK6, TNFα, BCL2, NOTCH1 and STAT5B\(^{42,43}\). Interestingly, the enhancer region associated with this candidate gene was located in its intragenic region, presumably acting as a cis-regulatory element of ZFP36L1 transcription. Noteworthy, this regulatory element was consistently hypermethylated in the MF patient cohort and showed the largest number of hypermethylated enhancer-related CpG probes among the final 27-gene list. Such hypermethylation correlated with downregulation of ZFP36L1 expression in MF as compared to controls (Figure 2B and Supplementary Figure 1B), which was further confirmed in an independent cohort of MF patients and myeloid cell lines (Figure 2C). Bisulfite sequencing confirmed that DNA methylation of the enhancer region of ZFP36L1 was consistently higher in all MF samples and myeloid cell lines as compared to control samples, whereas the promoter region remained unmethylated (Figure 2D-E, and Supplementary figure 1C). Results obtained by luciferase-reporting assays demonstrated that the exogenous DNA methylation reduced significantly the ZFP36L1 enhancer activity (Figure 2F). Moreover, 5’azacytidine hypomethylating treatment was able to reverse the DNA methylation levels of the enhancer region in vitro, restoring the gene expression levels of ZFP36L1 in SET-2 cell line (Figures 2G and 2H). Although the potential implication of ZFP36L1 in myeloid differentiation has been previously described\(^{41}\), our results suggest that epigenetic downregulation of ZFP36L1 might be a
prominent event in the pathobiology of MF; more importantly, hypermethylation of an
enhancer regulatory element represents a novel mechanism for disruption of normal gene
expression in the context of MF and ZFP36L1.

ZFP36L1 acts as a tumor suppressor gene in MPN

ZFP36L1 is known to mediate the degradation of mRNAs with AU rich elements in their
3’UTR. Therefore, we hypothesized that ZFP36L1 downregulation could lead to
upregulation of its putative targets in MF. To further validate this hypothesis, we used
DREME, a motif discovery algorithm specifically designed to find short, core DNA-
binding motifs enriched in the 3’UTR of genes. We found that the motif GTATTDTD (E-
value = 4.5*10^{-15}) was in fact overrepresented in transcripts upregulated in MF patients
(Figure 3A). Subsequently, an analysis of motif enrichment was performed, revealing a
significant enrichment of the mentioned motif (p = 7.69*10^{-20}) in transcripts upregulated
in MF patients (log FC > 1; p < 0.05).

Moreover, as a complementary approach, we searched the database for AU-rich elements
AREsite44 to determine if, from the differentially expressed genes (B-value > 10) between
MF and controls, we could detect an enrichment of these sequences in the upregulated
subset of genes. Of all the possible AU motifs, we focused on the most restricted 9, 11
and 13-mer motifs. Interestingly, we were able to identify an enrichment of 9-mer
sequence WTATTTATW (p = 0.01) and the 13-mer sequence WWWTATTTATWWW
(p = 0.03) exclusively among the upregulated genes in MF patients (Figure 3A).
Remarkably, both AU motifs highly resemble the core binding motif for ZFP36L1
predicted by DREME algorithm, enforcing the regulatory role of this gene in MF. These
results may suggest that ZFP36L1 downregulation is involved in MF pathogenesis
through a global deregulation of its transcriptome.

To further characterize the impact of ZFP36L1 downregulation in MF, we tried to revert
this phenotype by ectopic overexpression of the gene using lentiviral infection in the cell
line SET-2. 72 hours post-infection, the levels of EGFP positive cells were evaluated to
infer the efficacy of infection, together with the expression and protein levels of
ZFP36L1 to ensure the correct overexpression of the gene (Figures 3B-D). Cell viability was measured for five consecutive days by MTS assay and a decrease of more than 50% in cell proliferation was observed, with an increase of AnnexinV positive cells as measured by flow cell cytometry (Figures 3E and 3F). Taken together, these results suggest that ZFP36L1 downregulation can lead to significant alterations in the transcriptome, including relevant genes for cell proliferation, survival and differentiation, as previously described. Consequently, when ZFP36L1 expression levels are restored, SET-2 cells loss their malignant proliferative phenotype, enforcing the tumor suppressor role of this gene in MF.
CONCLUSION

The DNA methylation landscape of primary MF and post-ET/post-PV MF compared to healthy individuals show a consistent and differential DNA methylation profile between them. Absence of differences between primary MF and post-ET/post-PV MF suggests that these changes are founding epigenetic alterations occurring at the level of MPN stem cells and maintained in differentiated myeloid cells. Aberrant DNA methylation in MF is predominantly located in enhancer regions and has a significant impact on the expression of their target genes. Combining DNA methylation and gene expression data, we have identified ZFP36L1 as an attractive new possible therapeutic target that shows a decrease of gene expression mediated by enhancer hypermethylation. Our results also suggest a direct effect of ZFP36L1 downregulation in the gene expression profile of MF, through upregulation of mRNAs harbouring ARE canonical sites. For instance, in vitro rescue of ZFP36L1 expression had an impact in cell proliferation and induced apoptosis in SET-2 cell line, indicating a possible role of ZFP36L1 as a tumour suppressor gene in MF. Moreover, treatment with 5-azacytidine further evidenced the plausibility of ZFP36L1 pharmacologic manipulation. Taken together, these results constitute an unexplored therapeutic target for MF patients, which remain to be properly evaluated in the pre-clinical scenario.
Acknowledgments
We particularly acknowledge the patients for their participation and the Biobank of the University of Navarra for its collaboration. We thank John J Murphy and Amor Alcaraz for providing ZFP36L1 expression constructs. This research was funded by grants from Instituto de Salud Carlos III (ISCIII) PI14/01867, PI16/02024 and PI17/00701, TRASCAN (EPICA), CIBERONC (CB16/12/00489; Co-finance with FEDER funds), RTICC (RD12/0036/0068) and Departamento de Salud del Gobierno de Navarra 40/2016. N.M. is supported by a FEHH-Celgene research grant, M.P. was supported by a Sara Borrell fellowship CD12/00540 and RO was supported by Ministerio de Ciencia, Innovación y Universidades of Spain, Subprograma de Formación de Profesorado Universitario (FPU) award number FPU14/04331.

Authorship and Conflicts of Interest
The authors declare no competing conflicts of interests over the present manuscript.
REFERENCES

LEGENDS TO THE FIGURES

Figure 1. MF harbors a differential DNA methylation profile compared to control samples, with changes located primarily on enhancer regions. A) Unsupervised principal component analysis (PCA) showing a differential DNA methylation profile of MF patients and healthy controls with no differences between primary and secondary MF. B) Distribution of DMCs according to CpG island mapping (left graph) or functional chromatin analysis (right graph) grouped by DNA methylation status of the probes (legend). *p < 0.05 C) Hierarchical clustering of DMC located to enhancer regions in MF patients and healthy controls. D) GO-PANTHER analysis of genes adjacent to enhancer-DMCs. Analysis of hypermethylated and hypomethylated genes is shown on the left and right panel respectively.

Figure 2. Aberrant enhancer DNA methylation regulates gene expression in MF. A) Violin density plots of expression of genes with differentially methylated CpGs located to enhancer regions. Vertical axis represents fold change in gene expression. The horizontal width of the plot represents density of data along the y axis. B) Candidate genes with substantial changes in DNA methylation (FDR < 0.01) and differential gene expression. Red bars represent average of DNA methylation of all enhancer-mapped probes and black bars the average expression of all probes, error bars represent SD. C) ZFP36L1 downregulation validation by RT-qPCR in MF patients and 3 myeloid cell lines (including SET-2) compared to healthy controls (HC) (n=3). D-E) Bisulfite sequencing of ZFP36L1 D) enhancer region and E) promoter region in healthy controls (HC), cell lines and primary MF samples. For each sample, graph shows mean ± SD of 10 CpG dinucleotides for enhancer region and 15 CpG dinucleotides for promoter region. F) pCpG-L luciferase reporter assay showing the inhibition of luciferase activity after treatment of ZFP36L1 enhancer region with Sss-I methyltransferase. G) DNA methylation levels of the enhancer region (same 10 CpG dinucleotides as in D) after 5′azacytidine (AZA) treatment of SET-2. H) ZFP36L1 expression levels after 5′azacytidine (AZA) treatment of SET-2. Plots/bars indicate mean ± SD.
Figure 3. **ZFP36L1 decreases cell viability in MF.** A) Consensus binding motif for ZFP36L1 obtained by DREME motif discovery among transcripts with putative AU-rich motifs upregulated in MF samples. B) Efficiency of infection measured by percentage of EGFP positive cells after lentiviral infection. C) Q-PCR validation of ZFP36L1 restoration in SET-2 cell line after lentiviral infection. D) ZFP36L1 protein restoration measured by Western Blot in SET-2 cell line after lentiviral infection. E) ZFP36L1 rescue in SET-2 cell line decreased cell proliferation rate and F) increased AnnexinV positive cells.
A

DREME motif discovery: GTATTTDT

(E-value = 4.5×10^{-15})

![Graph showing motif discovery](image)

<table>
<thead>
<tr>
<th>Motif</th>
<th>Targets in Selection</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATTTTA</td>
<td>265</td>
<td>1.03E-08</td>
</tr>
<tr>
<td>WWATTTA</td>
<td>139</td>
<td>0.04</td>
</tr>
<tr>
<td>WTATTTAT</td>
<td>70</td>
<td>0.010</td>
</tr>
<tr>
<td>WWTATTTATW</td>
<td>37</td>
<td>N.S</td>
</tr>
<tr>
<td>WWWTATTTATWWW</td>
<td>24</td>
<td>0.039</td>
</tr>
</tbody>
</table>

B

![Bar chart showing EGFP and Control](image)

C

![Bar chart showing Fold Change Expression](image)

D

![Western blot images of Control, EGFP, and ZFP36L1](image)

E

![Graph showing % of cell proliferation](image)

F

![Graph showing % of annexin V positive cells](image)
SUPPLEMENTARY METHODS

DNA Methylation profiling
DNA methylation was assessed with Human-Methylation 450K Bead-Chip kit (Illumina, Inc., San Diego, CA, USA). The array-based assays for DNA methylation profiling were performed at the National Centre of Oncologic Investigations (CNIO, Madrid, Spain). Briefly, 500ng of genomic DNA were modified with sodium bisulfite (EZ DNA Methylation Kit, Zymo Research) and subsequently whole genome amplified following manufacturer’s recommendations. Samples were then hybridized in the assay chips as previously described\(^1\). Data arising from the 450K Human-Methylation array was analyzed by Bioconductor open source software. The analytical pipeline implemented several filters to exclude technical and biological biases (i.e. sex-specific methylation or overlapping CpGs with SNPs) and taking into account the performance characteristics of Infinium I and Infinium II assays\(^2\). Differentially Methylated CpGs (DMC) were defined as previously described\(^2,3\). DNA methylation data sets are available from the Gene Expression Omnibus (GSE118241).

Genomic and functional annotation of CpG sites
The hg19 version of the UCSC Genome Browser database was used to annotate raw data from the DNA methylation array. DMCs were annotated into four categories relative to CpG islands (CGI) as follows: inside CGI, CGI-shore (0-2 Kb from the CGI), CGI-shelf (>2 Kb up to 4 Kb from the CGI) and outside CGI (>4kb from the CGI). All annotations were extracted from Ensembl database (http://www.ensembl.org). DMCs were also annotated according to publicly available functional chromatin states of human CD34+ cells following the ChromHMM algorithm\(^4,5\). Chromatin states were categorized in six functional features (0: heterochromatin; 1-3: transcription-start sites; 4-5: enhancer regions (weak and strong); 6: promoters). This final annotation led to the identification of a group of DMC between MF and healthy controls that mapped to enhancer regions. The genes adjacent to these enhancers were then used for Gene Ontology (GO) functional enrichment analysis (GO-PANTHER) as described elsewhere\(^6\).
Identification of candidate genes targeted by aberrant DNA methylation in enhancers

Data of gene expression profiling (Affymetrix gene expression array) from primary MF (n=9) and healthy peripheral blood samples (n=21) was obtained from the publicly available GEO accession bank number GSE26049. Data was further processed using R and the open source Limma package. Genes showing consistent and ample differences in DNA methylation between MF and the control group were included (FDR<0.01; Δβ>0.4) and then were subsequently filtered by the changes in gene expression (logFC values below 0). The final list included 31 probes, encompassing 27 coding genes. Each of these genes was subsequently explored by literature search to identify those with potential implication in the hematopoietic system.

Cell culture

The SET-2 cell line (DMSZ # ACC-608; established from the peripheral blood of a patient diagnosed with essential thrombocytemia at megakaryoblastic leukemic transformation) was maintained in RPMI medium supplemented with 20% fetal bovine serum and antibiotics (100 IU/mL penicillin, 50 µg/mL streptomycin). HEL (DSMZ # ACC-11) and HL-60 (DSMZ # ACC-3) cell lines were maintained in RPMI medium supplemented with 10% fetal bovine serum and antibiotics (100 IU/mL penicillin, 50 µg/mL streptomycin). Cells were seeded at 0.5x10^6 cells/ml and incubated at 37°C and 5% CO₂ with 95% humidity.

Bisulfite sequencing

DNA methylation levels were interrogated and validated using traditional bisulfite sequencing. Briefly, after bisulfite modification (CpGenome DNA modification Kit, Merck, Darmstadt, Germany), the fragment of interest was amplified, sub-cloned into the pGEM-T easy vector system (Promega, Madison, USA) and transformed in JM109 competent cells (Promega, Madison, USA). Plasmid DNA was extracted (Nucleospin Plasmid, Macherey Nagel, Germany) and for each condition, at least 10 different CFUs (colony forming units) were sequenced by classical Sanger method using Genetic Analyzer 3130XL (Life Technologies, Carlsbad, USA). Universally methylated human DNA (Zymo research, USA) was used as a positive DNA methylation control for bisulfite modification. Primer sequences are available in Supplementary Table 1.
Luciferase reporter assays
The CpG-free vector (pCPG-L), gently provided by Dr. Michael Rehli⁹, was used to clone the ZFP36L1 enhancer region, after amplification with high-fidelity Platinum™ Taq polymerase (Invitrogen, Walthman, USA). Cloned plasmids were amplified on PIR1 competent E. coli cells (Invitrogen, Carlsbad, USA) and then treated with SssI CpG methyltransferase enzyme (New England Biolabs, Ipswich, USA) following manufacturer’s instructions. HEK293T cells were co-transfected with 10 ng/µl of DNA methylated or unmethylated reporter plasmids and 0.5 ng/µl renilla luciferase vector (pRL-SV40 Renilla Luciferase Control Reporter Vector, Promega), using Lipofectamine-2000 (Invitrogen, Carlsbad, CA). Forty-eight hours after transfection, luciferase/Renilla activity was analyzed using the Dual Luciferase® reporter assay system (Promega, Madison, USA) in an automatic 96-well plate reader according to manufacturer's instructions. Luciferase experiments were performed in triplicates. Primer sequences are available in **Supplementary Table 1**.

Gene expression by Q-PCR
Quantitative PCRs (Q-PCR) were performed with SYBR Green Master Mix (Applied Biosystems, Foster City, USA) and QuantStudio-3 96-well real-time PCR system (Applied Biosystems, Foster City, USA). GUSB gene was used as housekeeping reference gene in all cases. Primer sequences are available in **Supplementary Table 1**.

Overexpression of ZFP36L1
A vector containing ZFP36L1 open reading frame was kindly provided by Dr. Murphy and sub-cloned into a PL-SIN-GK vector¹⁰. The same vector backbone carrying an EGFP open reading frame was used as experimental control. Lentiviral particles were generated by co-transfecting HEK293T cells with ZFP36L1-encoding plasmid, psPAX2 (Addgene, #12260) and pMD2G (Addgene, #12259) plasmids (3:2:1 ratio) using Lipofectamine-2000 (Invitrogen, Carlsbad, CA). Viral supernatant was harvested after 72h, filtered (0.2 µm), concentrated by ultra-centrifugation (26,000 g for 2.5 hours at 4 °C) and supplemented to the cells for infection with polybrene (Sigma-Aldrich, Saint Louis, USA) at 4 µg/ml. SET-2 cell line was used as an in vitro model of JAK2V617F mutated MPN. Infection efficiency was assessed after 72h, determining EGFP positive
cells by FACScanto-II™ flow cytometer (BD Biosciences, San Jose, USA) and CellQuest software™ (Becton Dickinson, Franklin Lakes, USA).

Apoptosis and cell proliferation assays
Apoptosis was assessed using the FITC Annexin V Apoptosis Detection Kit I (BD Biosciences, San Jose, USA) following manufacturer’s protocol. Apoptosis was analyzed using FACScantoTM flow cytometer and CellQuest softwareTM (Becton Dickinson, Franklin Lakes, USA). Cellular proliferation was assessed with standard MTS assays using the CellTiter 96® AQeuous MTS Reagent (Promega, Madison, USA). All experiments were performed in triplicates.

Western Blotting
After standard protein extraction, 50µg of protein were separated by 10% SDS-PAGE electrophoresis and transferred onto a nitrocellulose membrane (Bio-Rad, Hercules, USA). Membranes were incubated with the primary antibodies as follows: polyclonal rabbit anti ZFP36L1/ZFP36L2 (#2119 Cell Signaling, Leiden, Netherlands), loading control was made with mouse anti β-actin antibody (A5441 Sigma-Aldrich, St. Louis, MO). Anti-rabbit IgG (A3687 Sigma-Aldrich, St. Louis, USA) and anti-mouse IgG (A1418 Sigma-Aldrich, St. Louis, USA) antibodies conjugated with alkaline phosphatase were used as secondary antibodies.

SUPPLEMENTARY REFERENCES

5. Wijetunga NA, Delahaye F, Zhao YM et al. The meta-epigenomic structure of purified human stem cell populations is defined at cis-regulatory sequences. Nat

SUPPLEMENTARY FIGURE LEGEND

FIGURE S1. ZFP36L1 is hypermethylated in MF A. Unsupervised dendrogram of DMC between MF and control samples show a distinctive pattern of DNA methylation of MF samples and controls (and no differences between primary and secondary MF). B) Schematic representation of ZFP36L1 locus and the comparative DNA methylation of all CpG dinucleotides included in the array for MF samples (upper panel) and controls samples (lower panel). Vertical bars represent normalized DNA methylation value as per the scale on the left. Chromatin state annotation is depicted on the color-coded horizontal bar on the top. Green boxes represent predicted CpG islands from UCSC genome browser. RefSeq transcript variants are shown in the bottom. C) Bisulfite sequencing of the enhancer and promoter region of ZFP36L1 in peripheral blood cells, different myeloid cell lines and MF patients. Black dots represent methylated and white dots are unmethylated CpG dinucleotides.

SUPPLEMENTARY TABLES

Supplementary Table 1. Lits of primers used for pyrosequencing, gene expression (qPCR) and pCPGL vector cloning.

Supplementary Table 2. Differentially methylated CpG mapped to enhancer regions (FDR<0.05) and expression value of most adjacent gene.
Supplementary Figure 1
Supplementary Table 1. Lists of primers used for pyrosequencing, gene expression (qPCR) and pCPGL vector cloning.

Primers for pyrosequencing and bisulfite sequencing

<table>
<thead>
<tr>
<th>Gene</th>
<th>Primer</th>
<th>5’ to 3’ sequence</th>
<th>Size (bp)</th>
<th>T°</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZFP36L1 promoter</td>
<td>ZFP-PR-F</td>
<td>gtgacgtactagcaacgGTTGAGGGTAGTGAATAAAGtagcaggatacgactacAAATCAATCCCATTATAAACAC</td>
<td>333</td>
<td>56°C</td>
</tr>
<tr>
<td></td>
<td>ZFP-PR-R</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SP6</td>
<td>TATTTAGGTGACACTATAAG</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ZFP36L1 enhancer</td>
<td>ZFP-EH-F</td>
<td>gtgacgtactagcaacgGTTGTTTTTGGGTGAGTGAATAAAGtagcaggatacgactacCACCCCTACTATAAAAACTTCCCT</td>
<td>188</td>
<td>57°C</td>
</tr>
<tr>
<td></td>
<td>ZFP-EH-R</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SP6</td>
<td>TATTTAGGTGACACTATAAG</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Primers for RT-QPCR experiments

<table>
<thead>
<tr>
<th>Gene</th>
<th>Primer</th>
<th>5’ to 3’ sequence</th>
<th>Size (bp)</th>
<th>T°</th>
</tr>
</thead>
<tbody>
<tr>
<td>GUSB</td>
<td>GUS-RT-Fw</td>
<td>GAAAATATCTGTTGGAGAGCTCATT</td>
<td>101</td>
<td>60°C</td>
</tr>
<tr>
<td></td>
<td>GUS-RT-Re</td>
<td>CCCAGTGAAGATCCCCCTTTTTA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ZFP36L1</td>
<td>ZFP36L1-RT-Fw</td>
<td>GATGACCACCACCCCTCGT</td>
<td>90</td>
<td>60°C</td>
</tr>
<tr>
<td></td>
<td>ZFP36L1-RT-R</td>
<td>CTGGGAGCACTATAGTGAGCA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Primers for pCPGL vector experiments

<table>
<thead>
<tr>
<th>Gene</th>
<th>Primer</th>
<th>5’ to 3’ sequence</th>
<th>Size (bp)</th>
<th>T°</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZFP36L1 enhancer</td>
<td>ZFP-EH-F-HindIII</td>
<td>GGGTGGTGTTTTTGGTGAGTGAATAAAGtagcaggatacgactacCACCCCTACTATAAAAACTTCCCT</td>
<td>534</td>
<td>50°C</td>
</tr>
<tr>
<td></td>
<td>MinProm-F</td>
<td>CTAGAGGGTATATAATGGAAAGCTTACCTCAGAGTGAAGATCCCCCTTTTTA</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>MinProm-R</td>
<td>CTAGAGGGTATATAATGGAAAGCTTACCTCAGAGTGAAGATCCCCCTTTTTA</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>pCPGL sequencing</td>
<td>pCPGL-F</td>
<td>TAAATCTTCTTCTGTCCACCTCTCG</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>pCPGL-R</td>
<td>TTTTACTTCTTCTGTCCACCTCTCG</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>pCPGL-Fw-short</td>
<td>GGGAG</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>pCPGL-RV-short</td>
<td>GGGAG</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>