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Abstract

Background: Discoidin domain receptor tyrosine kinase 1 (DDR1) is present in mul-

tiple types of epithelial cells and is highly expressed in the nervous system. Previ-

ous studies have revealed that DDR1 is involved in schizophrenia (SCZ). Although the

expression of DDR1 in oligodendrocytes has been described, its role in brain myelina-

tion is notwell understood. In this study,weaimed toexplore the coexpressionnetwork

of DDR1 in the human brain and to compare the list of DDR1 coexpressing genes with

the list of genes containing single nucleotide polymorphisms (SNPs) that are associated

with SCZ.

Materials and Methods: We used a weighted gene coexpression network analysis

(WGCNA) of a dataset from four brain areas (the dorsolateral prefrontal cortex, pri-

mary motor cortex, hippocampus, and striatum) and from four different intervals (I) of

life (I-1 = 10–38 weeks postconception, I-2 ≥0 to < 6 years, I-3 ≥ 6 to < 40 years, and

I-4 ≥ 40 years of age). We compared the list of genes that are associated with SCZ in

the GWASCatalog with the list of genes coexpressing withDDR1 in each interval.

Results:Our study revealed thatDDR1was coexpressedwith oligodendrocyte-related

genes mainly in I-2 (adjP = 5.66e-24) and I-3 (adjP = 2.8e-114), which coincided

with the coexpression of DDR1 with myelination-related genes (adjP = 9.04e-03 and

2.51e-08, respectively). DDR1 was also coexpressed with astrocyte-related genes in

I-1 (adjP = 1.11e-71), I-2 (adjP = 2.12e-20) and I-4 (adjP = 9.93e-52) and with type

2 microglia-related genes in I-1 (adjP = 2.84e-08), I-2 (adjP = 5.68e-16) and I-4

(adjP= 3.66e-10).Moreover, we observed significant enrichment of SCZ susceptibility

genes within the coexpression modules containing DDR1 in I-1 and I-4 (P = 1e-04 and

0.0037, respectively), during which the DDR1module showed the highest association

with the astrocytes.
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Conclusions: Our study confirmed that DDR1 is coexpressed with oligodendrocyte-

and myelin-related genes in the human brain but suggests that DDR1 may contribute

mainly to SCZ risk through its role in other glial cell types, such as astrocytes.
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1 INTRODUCTION

Discoidin domain receptor tyrosine kinase 1 (DDR1) is a membrane-

anchored protein activated by fibrillar collagens (Leitinger, 2014). In

adult human brain tissue, DDR1 expression is detectedmainly in oligo-

dendrocytes, but it is also found in astrocytes, activated microglia

and endothelial cells (Roig et al., 2010; Vilella et al., 2019 ). DDR1

is also expressed in the peripheral nervous system, presumably in

Schwann cells, and in other tissues and cell types (Leitinger, 2014;

Vilella et al., 2019 ). During mouse neurodevelopment, DDR1 is

maximally expressed in oligodendrocytes throughout the myelination

period (Franco-Pons et al., 2006). It has been shown that remyelina-

tion following experimentally induced demyelination induces DDR1

upregulation (Franco-Pons et al., 2009). Recent single-cell RNA-seq

studies in rodent models reported that ddr1 expression peaks in the

period in which newly formed oligodendrocytes differentiate into

myelinating oligodendrocytes (Vilella et al., 2019). Data from these

studies demonstrated that genes encoding the membrane receptors

Ephrinb3 (Efnb3), plexinb3 (Plxnb3), ERBB3 (Erbb3) and semaphorin

4D (Sema4D); ligands (such as gelsolin [Gsn] and collagen 11 alpha

2 chain [Col11a2]); and classical myelin proteins (such as myelin-

associated oligodendrocyte basic protein [Mobp]), among others, are

coexpressed withDDR1 (Vilella et al., 2019). Nevertheless, the specific

role ofDDR1 in myelination has not yet been identified.

Humans exhibit the highest level of brain myelination among mam-

mals (including primates), which allows for a high capacity of infor-

mation processing (Bartzokis, 2011). Myelin deficiencies have been

observed in several psychiatric disorders, including schizophrenia

(SCZ), through neuroimaging, genetic, molecular, and anatomical stud-

ies (Bartzokis, 2011; Chen et al., 2018; Koshiyama et al., 2019 ).

DDR1 variations have been found to be associated with human

schwannomas (benign tumors of myelin-producing Schwann cells)

(Agnihotri et al., 2016) and SCZ (Benkovits et al., 2016; Gas et al.,

2018; Roig et al., 2007 ). Moreover, genome wide association stud-

ies (GWAS) have found associations between DDR1 and multiple

sclerosis (Mo et al., 2019), neuroticism (Kim et al., 2017), and SCZ

(Pardiñas et al., 2018), although this latter study did not include the

DDR1 locus in the final analyses because it falls inside (1100 kb

apart) of a linkage disequilibrium (LD) region wherein the highest

SCZ-associated locus is located. Differentially expressed levels of the

DDR1c isoform (Q08345_5, 919aa) have been observed in brain tis-

sues from patients with SCZ, compared to healthy controls, with con-

tradictory results (Gandal et al., 2018; Roig et al., 2012 ). However,

detailed studies on the coexpression of DDR1with other genes during

human brain development are lacking.

Here, with the primary hypotheses that DDR1 is upregulated dur-

ing oligodendrocyte myelination and that DDR1 is itself or through its

interaction with other genes associated with SCZ, we aimed to iden-

tify the genes coexpressedwithDDR1 in humanbrain tissue indifferent

neurodevelopmental periods and to test whetherDDR1 is coexpressed

with SCZ-associated genes.

2 MATERIALS AND METHODS

2.1 Data

Publicly available spatiotemporal transcriptome data of the human

brain were used for this study (Kang et al., 2011). Raw data files were

retrieved from the GEO database (GSE25219), which consisted of

genome-wide transcriptome data from 16 brain regions analyzed with

the Affymetrix GeneChip Human Exon 1.0 ST Array. Samples were

selected according to the following criteria: brain region, number

of subjects available and tissue quality (RNA integrity number, RIN

≥8). We evaluated gene coexpression patterns in three brain regions

that are involved in SCZ symptomatology, as well as one unrelated

region. The first region was the dorsolateral prefrontal cortex (DFC),

which is associated with high cognitive processing and was previously

shown to be involved in SCZ (Friston, 1992; Lewis & Mirnics, 2006

). The second region, the hippocampus (HIP), is involved in memory

and other cognitive processes, which are impaired in SCZ (Geuze

et al., 2005). The third region was the striatum (STR), which, due to

its high dopaminergic activity, has been related to positive psychotic

symptoms in SCZ (McCutcheon et al., 2019). Finally, the primarymotor

cortex (M1C), which is not associated with SCZ, was chosen as the

“noncognitive” region.We grouped the 15 original periods (Kang et al.,

2011) into four developmental intervals (I) considering both specific

milestones in human myelination (Bartzokis, 2011; Baumann & Pham-

Dinh, 2001 ) and sample size to ensure adequate statistical power

in the analyses (Iancu et al., 2012). Interval 1 (I-1), from 10 weeks

postconception (WPC) to 38 WPC (birth), coincides with the prolifer-

ation of oligodendrocyte precursor cells but low levels of myelination;

Interval 2 (I-2), from birth to < 6 years of age, is when myelination of

the cognitive regions starts to increase; Interval 3 (I-3), from ≥6 to

<40 years of age, coincides with maximal myelination in cortical areas;

and Interval 4 (I-4), from ≥40 years of age on, corresponds to a decline
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in myelination in the brain. Ultimately, 462 brain samples (I-1 = 188,

I-2 = 54, I-3 = 138, and I-4 = 82) including both hemispheres from 46

individualswere obtained. Both sexeswere represented,with 22 of the

subjects being female and 24 of the subjects being male (Supporting

Infnormation Table S1).

All 22,011 probes were collapsed into 17,634 annotated genes.

Afterwards, we filtered out the genes that did not have a normalized

expression log2-transformed signal intensity of≥6 in all of the assessed

areas and in all of the periods to ultimately obtain 12,643 genes.

For replication purposes, open resources from two data sets were

accessed (Li et al., 2018; Zhu et al., 2018 ). Expression levels in these

two studies were determined via RNA sequencing as part of the Psy-

chENCODE (http://psychencode.org) and BrainSpan Consortia (www.

brainspan.org) projects.

This study compliedwith the local and international standardsof the

ethical aspects regarding research with human data and was approved

by the IISPV ethics committee.

2.2 Gene expression

Whole-transcript levels of DDR1, classical oligodendrocyte (OLIG2)

and myelin (MAG, MBP) (Baumann & Pham-Dinh, 2001) markers and

three collagen chain genes expressed in brain and which protein bind

DDR1 (collagen I, COL1A1, and collagen IV, COL4A1) (Leitinger, 2014)

were retrieved from the Human Brain Transcriptome database (http:

//hbatlas.org). These genes and other oligodendrocyte-related (OLIG1,

SOX10, PDGFRA, and CSPG4), myelin-related (GAC, CLDN11, CNP, and

PLP1), astrocyte-related (GFAP) and type 2 microglia-related (CD53,

CX3CL1, and SLC2A5) genes were evaluated. For replication purposes,

DDR1 transcript levels were also retrieved from the Human Brain

Development database (http://development.psychencode.org/).

2.3 Weighted gene coexpression analysis

Weighted gene coexpression network analysis (WGCNA) is a method

that permits the construction of correlation networks based on gene

expression patterns, allowing for the construction of modules (clus-

ters) that correspond to genes that have highly correlated patterns of

expression. Coexpression network analyses were computed indepen-

dently for the four development periods using theWGCNA library in R

software following standard protocols (Langfelder & Horvath, 2008).

The weighted networks were generated by using the subset of genes

with consistent levels of expression across samples. For all periods, the

deep split level was set to 1 (medium sensitivity), and for each period

a power (β) for which the scale-free topology fitting index (R2) was

≥0.85 was selected by plotting the R2 against soft thresholds (I-1 = 5;

I-2= 6; I-3= 6; I-4= 10). The maximum height at which the tree could

be cut was set to 0.99, and the minimum size of the resulting mod-

ules was set at 27. The rest of the parameters were left as the default

values.

The userListEnrichment function from the WGCNA package was

used for measuring cell type enrichment between inputted and pre-

made collections of brain-related lists (Miller et al., 2011). Of the pre-

made lists, only those belonging to Human Meta (Miller et al., 2010)

were used for the enrichment function while lists from Cahoy and col-

leagues (Cahoy et al., 2008) were used for validation purposes. We

also included one list of genes extracted from the Gene Ontology

(GO) database by searching for the term “myelin” across human genes;

it contained 193 genes, 175 of which were present in our curated

gene set.

To enable comparisons among time intervals, each coexpression

network was reassigned such that modules with significant overlap

with a I-1 module were assigned the same label. Modules without a

significant overlap with modules identified in I-1 were assigned a new

label (Supporting Information Table S2).

To summarize the gene expression profiles of the highly correlated

genes inside a given module, we used the first principal component,

which is referred to as themodule eigengene (ME).We tested eachME

for correlations with the characteristics (sex, age, hemisphere, region,

postmortem interval (PMI), pH, and RIN) of each sample.

To compare and integrate our gene coexpression networks with

protein interaction data, we extracted protein interaction networks

from the Search Tool for the Retrieval of Interacting Genes (STRING).

Finally, to explore the biological functions of the DDR1 modules, we

performed GO term enrichment analysis as well as pathway ontology

analyses using theREACTOMEdatabasewithWebGestalt (Wanget al.,

2013), and the 12,643 genes were used as background. Within each

period, all P-values were corrected using Bonferroni’s multiple-test

correction.

2.4 Overlap with SCZ susceptibility genes

We retrieved all entries containing the word “schizophrenia” from the

genome-wide association study (GWAS) Catalog (Buniello et al., 2019)

and kept the “mapped gene” column (accessed January 16, 2020). This

yielded a total of 2,056 mapped entries, 439 of which were present in

the evaluated gene dataset. We then performed 10,000 randomized

bootstrapswithin themodules containingDDR1andgenerated random

lists of genes of the same length as the module containing DDR1. From

these bootstrapped lists, we assessed overlap with the SCZ gene set.

After 10,000 iterations, we compared the distribution of bootstrapped

values to the real number of genes that overlapped with SCZ in the

module to obtain an empirical p-value for the studiedmodule.

3 RESULTS

3.1 DDR1 expression

Our study focused on DDR1 expression during brain development and

in adulthood. Relative whole-transcript DDR1 levels in several brain

http://psychencode.org
http://www.brainspan.org
http://www.brainspan.org
http://hbatlas.org
http://hbatlas.org
http://development.psychencode.org/


4 MUNTANÉ ET AL.

F IGURE 1 (A). Diagram of the study strategy. (B) Hierarchical clustering and visualization of genemodules in all brain periods examined in the
human dataset. The network created in I-1 served as a reference network. Themodule colors of other networks were redefined using the
matchLabels function in theWGCNAR package tomatch the correspondingmodule in the human network ( Table S3). Modules of coexpressed
genes were assigned colors corresponding to the branches indicated by the horizontal bars beneath the dendrogram. From top to bottom, these
bars represent modules obtained using periods 1 to 4. The latter bar indicates the location ofDDR1

regions in the I-1 to I-4 periods were retrieved from both the Human

Brain Atlas and the Human Brain Development database, and these

levels are shown in Supporting Information Figure S1. DDR1 expres-

sion diminished over time in all the studied regions. In general, a

time-dependent decrease was observed in the expression of COL1A1

and COL4A1, which code for components of collagens, the extracel-

lular matrix ligands that activate DDR1 (Supporting Information Fig-

ure S1). However, the expression of the classical oligodendrocyte and

myelin markers OLIG2, CNP, MAG, and MBP increased perinatally and

was maintained at a relatively stable level until adulthood (Supporting

Information Figure S1).

3.2 WGCNA to identify DDR1 coexpression
networks

WGCNA performed to identify gene coexpression networks in each

development interval, and the lowest values that allowed more than

85% similarities in topological models of the four intervals were used

as soft thresholds (I-1= 5; I-2= 6; I-3=6; and I-4= 10), resulting in the

detection of 8, 11, 9, and 16 modules for each of the intervals, respec-

tively (Figure 1). Genes that were not correlated strongly enough with

any module were considered background (denoted by the color gray

andnamedhereafter asmodule 0, Figure 1 and Supporting Information
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TABLE 1 DDR1-module cell-type enrichments in each time interval

I-1

10 - 38 PCW

I-2

≥0 -< 6 years

I-3

≥6 -< 40 years

I-4

≥ 40 years

DDR1modulea M3 (brown) M3 (brown) M5 (red) M3 (brown)

Cell typemoduleb

Astrocytes 1.11e-71 2.12e-20 ns 9.93e-52

Microglia (Type 1) 3.26e-04 ns ns ns

Microglia (Type 2) 2.84e-08 5.68e-16 ns 3.66e-10

Oligodendrocytes 1.53e-13 5.66e-24 2.18e-114 1.45e-02

Myelinc ns 9.04e-03 2.51e-08 ns

Neuron ns ns ns ns

PVALB Interneurons ns ns ns ns

Glutamatergic Synapse ns ns ns ns

Nucleus ns ns ns ns

Mitochondria ns ns ns ns

Ribosome ns ns ns ns

aDDR1module according to Figure 1.
bCell typemodules according toMiller and colleagues (Miller et al., 2010).
cMyelin genes according to GO.

ns= nonsignificant.

Table S2). In I-1, I-2, and I-4, DDR1 was found in M3 (brown module)

with 812, 553, and 398 genes, respectively (Supporting Information

Table S3). However, DDR1 clustered in M5 (red module) with 527

genes in I-3 (Supporting Information Table S3). Within each period, we

evaluated the correlation of the detected modules with sample traits

such as sex, age, hemisphere, region, pH, PMI, and RIN. The complete

list of the correlations of the modules with external traits is shown in

Supporting Information Figure S2. Multiple modules were associated

with one ormore traits, but nomodulewas correlatedwith hemisphere

at any period. Although we found significant correlations with some

of the external traits, we did not further analyze the data to correct

for them as our study was not focused on correlation strength. All of

the networks resulting from all the DDR1 modules showed a protein-

protein interaction (PPI) enrichment value < 1e-16 (data not shown),

indicating that the proteins were strongly biologically connected.

3.3 DDR1 module cell-type enrichments

To investigate the role of DDR1 during neurodevelopment as well as

in the adult human brain, the function userListEnrichment was used

to assess cell-type enrichments using the human brain networks

described by Miller and colleagues (Miller et al., 2010). We also eval-

uated the enrichment of a list of myelin-related genes from the GO

database and exploredwhether conventional glial cell type genes over-

lapped with the DDR1 module. Table 1 shows the cell-type enrich-

ments in DDR1 modules in each period, and Supporting Information

Figure S3 shows the cell-type enrichments in all modules. DDR1mod-

ule showed coexpression with oligodendrocyte genes in all four inter-

vals, with the highest correlation in I-3 (P= adj1.53e-13, adjP= 5.66e-

24, adjP = 2.18e-114, and adjP = 1.45e-02, respectively). Notably, in

I-3 DDR1 was contained in M5 and the module matches exclusively

with oligodendrocyte and myelin gene profiles. In I-1, I-2, and I-4,

DDR1was contained inM3with a high correlation with astrocyte gens

(adjP = 1.11e-71, adjP = 2.12e-20, and adjP = 9.93e-52, respectively),

microglia type 2 (adjP = 2.84e-08, adjP = 5.68e-16, and adjP = 3.66e-

10, respectively) and to a lesser extent to microglia type 1, which was

only significant in I-1 (adjP = 3.26e-04). Notably, M14 in I-4, which

does not contain DDR1, was strongly enriched in oligodendrocyte

markers (adjP = 2.62e-60) and myelin-related genes (adjP = 1.48e-

05) (Supporting Information Figure S3). Altogether, these results sug-

gest that the principal role of DDR1 in brain is in non-mature oligo-

dendrocytes, but some function is also associated with astrocytes and

microglia.

Conventional glial cell type gene markers and collagen genes were

localized within the modules at each interval (Supporting Informa-

tion Table S4). In summary, M3 at I-1 contained classical markers for

OPC, OLs-myelin, astrocytes, and microglia. M3 in I-2 contained gene

markers for OPC, OLs-myelin and astrocytes; M5 at I-3 contained

exclusively OL-myelin markers; and M3 in I-4 contained OL-myelin

and astrocyte markers. These results corroborate the cell-type enrich-

ments shown in Table 1. Finally, the enrichments in the DDR1 mod-

ules were validated using mouse brain networks from Cahoy and col-

leagues (Cahoy et al., 2008) (Supporting Information Table S5), which

confirmed that theDDR1module corresponded to astrocytes in I-1 and

I-4, to astrocytes and oligodendrocytes in I-2 and to oligodendrocytes

in I-3.Confirmatorydatawere retrieved fromtheHumanDevelopmen-

tal Brain project, which demonstrated that DDR1 in the adult brain
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F IGURE 2 Violin plot showing the empirical enrichment of SCZ
genes in theDDR1module at the four periods as determined by
GWAS. Black triangles represent the observed number of overlapping
genes between SCZ andDDR1modules in each period. The violin is
colored by the DDR1module color in each period. The violin
distribution shows the number of overlapping genes after 10,000
module random bootstraps of the same gene length. In I-1 and I-4, the
observed number of SCZ genes in theDDR1module was higher than
expected after 10,000 bootstraps (empirical p-value= 1e-04 and
0.0037, respectively) (Supplementary Table S9)

is mainly expressed in astrocyte and oligodendroglia cell linages (Sup-

porting Information Figure S4).

3.4 Pathway enrichment in DDR1 modules

We then performed pathway enrichment analysis of DDR1modules in

each period (Supporting Information Tables S6–S9). Themost common

enriched GO term for the DDR1 module was gliogenesis, which was

significant in all periods (I-1 to I-4; adjP = 2.94e-07, 5.91e-04, 2.68e-

07, and 4.08e-04). In I-1, the DDR1 module (M3) was also enriched

in regulation of cell adhesion (adjP = 2.6e-07), the ERK1 and ERK2

cascades (adjP = 1.05e-07), and extracellular matrix organization

(adjP = 1.27e-06) (Supporting Information Table S6). In I-2, the DDR1

module (M3) was significantly enriched in categories such as cell

substrate adhesion (adjP= 6.3e-07) (Supporting Information Table S7).

In I-3, theDDR1module (M5)was highly enriched in the ensheathment

of neurons (adjP= 3.13e-06), the myelin sheath (FDR= 8.26e-03) and

the actin cytoskeleton (adjP=8.26e-03) (Supporting InformationTable

S8). Finally, in I-4, the DDR1 module (M3) showed enrichment in GO

categories such as negative regulation of nervous system development

(adjP= 4.08e-04) (Supporting Information Table S9).

3.5 Overlap with SCZ risk genes

As bothDDR1 variants andmyelin impairments are involved in SCZ,we

evaluated whether genes previously found by GWASs to be associated

with SCZwere enriched in theDDR1modules in each period (Figure 2).

We generated 10,000 random gene lists of the same length, one for

each period (theDDR1module contained 812, 553, 527, and 398 genes

for intervals 1, 2, 3, and 4, respectively) and evaluated the number

of SCZ genes in the bootstrapped module (Supporting Information

Table S10). We found that M3, which contained DDR1 in I-1 and I-4,

was enriched in SCZ-associated genes (empirical p-value = 1e-04

and 0.0037, respectively). In I-1 the overlapping list of 49 genes is

represented by functions such as cell and tissue development, calcium

signaling, energy metabolism, synapsis, and genes coding for proteins

of the dystrophin-associated proteins complex (DAPC). In I-4, the

overlapping list consists of 24 genes coding for proteins involved in

axon growth/guidance, calcium and cell signaling, intracellular stress

response and transcriptional repression. The DDR1 modules in I-2

and I-3 were not enriched in SCZ susceptibility genes (empirical

p-values= 0.45 and 0.21, respectively).

4 DISCUSSION

Although in situ hybridization, immunohistochemical and RNA-seq

studies have mapped DDR1 to white matter in humans and rodents

(Vilella et al., 2019), a complete coexpression analysis of DDR1 in

human brain development has not been published. Here, we show that

DDR1 (whole-transcript) is expressed at similar levels between four dif-

ferent brain regions (the DFC, HIP, STR, andM1C) and decreases in an

age-dependent manner (from the embryonic-fetal stage to > 40 years

of age).

The most relevant result shown here is that DDR1-containing mod-

ules were significantly enriched in oligodendrocyte-related genes in

the human brain in all four-time intervals. These results are consistent

with previous findings in mice (Franco-Pons et al., 2006; Vilella et al.,

2019 ) and in the human brain (Roig et al., 2010). The highest correla-

tion of DDR1 expression with oligodendrocyte genes was observed in

I-3 (≥6 to< 40 years of age), followed by I-2, I-1, and I-4. These results

are also congruent with previous data in mice brain showing that ddr1

expression peaks on postnatal days 15–17 (Franco-Pons et al., 2006;

Zhang et al., 2014 ), coinciding with the peak of myelination (Bau-

mann&Pham-Dinh, 2001).DDR1-containingmoduleswere also signif-

icantly enriched in myelin-related genes in I-2 and I-3, with the high-

est levels being observed in I-3, but the enrichment was lower for this

module than for the oligodendrocyte module. One possible interpre-

tation of this result, a part of a sample power explanation, is that the

DDR1 expression pattern is similar to that of oligodendrocyte markers

other thanmyelinating oligodendrocytemarkers. This interpretation is

in line with the results found in mice, in which ddr1 expression peaks

between the periods in which late newly formed oligodendrocytes and

myelinating oligodendrocytes are present (Marques et al., 2016; Zhang

et al., 2014 ). Therefore, higher enrichment in oligodendrocyte-related

genes thanmyelin-related genes (genes expressed in mature myelinat-

ing oligodendrocytes) is expected, and it suggests that in the human

brain DDR1 is relevant in differentiated oligodendrocytes that are not

yet myelinating or that are myelinating but not mature. Myelin defi-

ciencies have been observed in psychiatric disorders, such as psychosis

(Mighdoll et al., 2015) and depression (Zhou et al., 2021). Recently,

genome-wide based studies have shown that myelin gene expres-

sion and regulation are altered in SCZ (Hegyi, 2017). In addition,
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experience-induced myelination is known to be necessary for brain

function (Fields, 2008). As an example, a recent study in mice demon-

strated that remote fear memory recall depends on new myelination

(Pan et al., 2020). In summary, compelling evidence supports the impor-

tance of myelin integrity for brain function and its link with psychiatric

diseases.

DDR1-containing modules also showed significant enrichment in

microglia-related genes, in type 2 microglia-related genes specifically,

in I-1, I-2, and I-4. Likewise,DDR1-containingmodules were highly cor-

relatedwith astrocyte-related genes in I-1, I-2, and I-4. Coexpressionof

DDR1with astrocyte- andmicroglia-related genes couldbe interpreted

to mean that DDR1 is expressed in these types of cells, as has already

been reported (Vilella et al., 2019). Additionally, the periods ofmaximal

enrichment (I-1 and I-2) can be inferred as the developmental periods

of neurogenesis, gliogenesis, synaptic formation, and synaptic pruning.

All of these processes require high activity of tissue remodeling involv-

ing both astrocytes (Nutma et al., 2020) and type 2 microglia (Tang &

Le, 2016). Conversely, in I-4, aging activation of astrocytes (Boisvert

et al., 2018; Clarke et al., 2018 ) andmicroglia (Harry, 2013) are proba-

bly related to degenerative processes associatedwith cognitive decline

(Harry, 2013; Santello et al., 2019 ), suggesting that DDR1 also plays a

role in these cell types in this period of life. Notably, recent research

has linkedboth astrocytes andmicrogliawith the processes of develop-

mental synapsis pruning and post-developmental synaptic activity and

plasticity (Mei et al., 2018;Wang et al., 2019).Moreover, in a largemul-

ticenter studyof adult humanbrain frompatientswithdifferent psychi-

atric disorders, the gene expression profiles of the pyramidal neurons

(CA1), astrocytes and microglia cell types explained between 25% and

54%of variance in interregional profiles of groupdifferences in cortical

thickness (Patel et al., 2020).

We did not observe significant expression of neuronal genes (glu-

tamatergic synapses, neurons, or PVALB interneurons), nuclear genes,

mitochondria-related genes or ribosome-related genes in the DDR1

module. In rodents, ddr1 has been observed in proliferative and differ-

entiating areas during neurogenesis in early neurodevelopment (Vilella

et al., 2019); however, under the conditions studied here we could not

detect covariations in the expression of DDR1 and neuronal genes in

the human brain, suggesting that expression of DDR1 in fetal stages is

not regulated within themain neuronal pathways.

The pathway enrichment analysis revealed that in I-1, I-2, and I-4,

the top pathways associatedwith theDDR1modulewere cell substrate

adhesion and extracellular matrix interactions. However, in I-3 (≥6-40

years of age), the top enriched pathways were neuron ensheathment

and the myelin sheath. Moreover, in I-3, conventional myelin markers

(CNP, MAG, MBP, PLP1, and SOX10) were found in the DDR1 module

(M5). Notably, Rho GTPase and actin binding were also significantly

enriched in M5, which suggests, according to previous data (Yeh et al.,

2019), that the role of DDR1 in oligodendrocytes is mediated by the

Rho GTPase system and impacts actin cytoskeleton remodeling. This

indicates cellmovement that could be associatedwith oligodendrocyte

process extension and the beginning of axon ensheathment.

Aswepreviously demonstrated that SNPvariants ofDDR1 are asso-

ciated with SCZ (Gas et al., 2018; Roig et al., 2007 ), we also tested

whether SCZ susceptibility genes are significantly more common in

DDR1-containing modules. We found that the overlap of the 2 lists

of genes was significant in I-1 (fetal) and I-4 (≥40 years). Interest-

ingly, in I-1 and I-4, theDDR1module was highly correlated with astro-

cytes. The neurodevelopmental hypothesis of SCZ states that distur-

bances in the molecular development of the brain are the first step

that confers susceptibility to the disease, which manifests later in life

with the outbreak of psychotic symptoms (Weinberger, 1987). Cur-

rently, this hypothesis is supported by the identification of genetic risk

(Owen & O’Donovan, 2017). Based on the present data, we hypoth-

esize that, prenatally, DDR1 modestly contributes to SCZ risk and is

mainly expressed in astrocytes and oligodendrocytes and involved in

CNS architecture including synaptic pruning and myelination. In addi-

tion, DDR1 could contribute to SCZ risk through astrocytes’ modula-

tion of the glutamatergic neurotransmission (Mei et al., 2018). Con-

versely, later in adulthood DDR1 is mainly expressed in astrocytes and

microglia and could be involved in degenerative processes related to

cognitive impairments also observed in chronic SCZ. This hypothesis is

supported by the recent results showing that astrocyte and microglia

genes as well as neuronal genes contribute to the differences in corti-

cal thickness in schizophrenia (Patel et al., 2020). The fact that the list

of genes does not significantly overlap with SCZ susceptibility genes

in I-2 and I-3, when the DDR1 module is highly correlated with oligo-

dendrocyte andmyelin function, suggests thatmyelin-related genes do

not contribute importantly to the SNP-associated risk of SCZ devel-

opment, which is in agreement with recent data pointing to neurons

(Skene et al., 2018; Toker et al., 2018 ) and astrocytes (González-Peñas

et al., 2019; Toker et al., 2018 ). However, these interpretations are

speculative, and further investigation is needed to address them.

Some limitations to our study exist. First, while the sample size

allowed for sufficient statistical power, we could not further analyze

subgroups of data based on, for instance, sex or shorter developmen-

tal time periods. Second, separate expression data for individualDDR1

transcripts were not obtained; therefore, we could not explore which

DDR1 isoform is most associated with oligodendrocyte- and myelin-

related genes. Finally,WGCNA identifies clusters of geneswith expres-

sion levels that are highly correlated in a given sample, but gene coex-

pression does not always mean that the affected genes are expressed

spatially close to each other. Future functional studies assessing the

exact role ofDDR1 transcripts in oligodendrocytes and other cell types

in the human brain are needed.

Regarding the possible translation of these observations, Fowler

and colleagues (Fowler et al., 2020) suggested that DDR1 could be

a therapeutic target for neurological diseases. The author’s proposal

was based upon their results showing that by inhibiting DDR1, the

changes in brain tissue seen in Parkinson’s diseases such as inflamma-

tion, neuronal injury, autophagy and vesicular transport are reversed.

Therefore, in the near future, with exhaustive description of the role of

DDR1 in brain cells, the receptor can become a therapeutic target in

psychiatry.

In summary, we provide convincing evidence for the involvement of

DDR1 in oligodendrocytes and for a role for this gene in myelination

duringhumanbraindevelopment.Additionally, andagainst ourprimary
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hypothesis, the data suggest that DDR1 can contribute to SCZ suscep-

tibility through coexpression with astrocyte-related genes.
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